期刊文献+

对称α稳定分布中预处理的共变时差估计 被引量:1

Preprocessed covariation time delay estimation based on in symmetric α-stable distribution noises
下载PDF
导出
摘要 针对传统共变算法在对称α稳定分布(SαS)噪声中方差趋于无穷,实际应用效果不佳的缺点,本文提出了一种基于预处理的共变时差估计算法,该算法将接收信号通过任意满足奇对称单调增的有界函数进行预处理后,再使用共变算法,理论证明了改进算法方差降为了有限值,从而提高了时差估计精度及算法实际应用价值。最后提出了两种满足上述条件的预处理函数,并对其和已有的反正切函数进行仿真,验证了本文算法在SαS分布噪声环境下提高算法估计精度的有效性和在高斯噪声环境下的适用性。 As to the problem that the traditional covariation method has an infinite variance ,which leads to a poor effect in practice in symmetric stable distribution noises (SαS) , this paper proposes a eovariation time delay estimation method based on signal preprocessing. The theoretical analysis indicates that the covariation of the new method has a finite variance by passing the received signals through any odd symmetry, monotone increasing and bounded functions ,which improves the precision accuracy of time delay estimation by a large margin, making the apply of the method in practice become possible. At last two preprocessing methods which satisfying the conditions above are proposed. Taking the proposed preprocessing methods and the pre-existing aretangent method into aecout, the simulation results prove that the proposed methods can improve the estimated accuracy in symmetric stable distribution noises(SαS) and can be used under Gaussian conditions.
作者 田瑶 张莉
出处 《信号处理》 CSCD 北大核心 2013年第6期766-771,共6页 Journal of Signal Processing
基金 国家自然科学基金(No.61201380)
关键词 对称α稳定分布 预处理 共变 时差估计 symmetric α-stable distribution preprocessing method eovariation method time delay estimation
  • 相关文献

参考文献12

  • 1Ho K C, Lu X N, and Kovavisaruch L. Source location u- sing TDOA and FDOA measurements in the presence of receiver location errors : analysis and solution [ J ]. IEEE Trans. on Signal Processing, 2007,55 (2) :684- 696.
  • 2邱天爽,X.Kong,鲍海平,李小兵,张旭秀.一种基于脑电信号分析的中枢神经系统损伤检测的韧性自适应方法[J].中国生物医学工程学报,2003,22(1):23-29. 被引量:9
  • 3WANG J and Ercan Engin Kuruoglu. Alpha-stable chan- nel capacity[ J]. IEEE Communications Letters,2011,15 (10) :1107-1109.
  • 4TANG X T, MA M, and Ostry D I. Characterizing impul- sive network traffic using truncated c-stable processes J ]. IEEE Communications Letters, 2009, 13 (12) : 980-982.
  • 5Min Shao and C L Nikias. Signal Processing with fraction- al lower order moments:stable processes and their appli- cations[ J ]. Proceedings of the IEEE, 1993, 81 ( 7 ) : 986-1010.
  • 6Knapp C and Carter G. The generalized correlation meth- od for estimation of time delay [ J ]. IEEE Trans. on Acoustics, Speech and Signal Processing, 1976,24 (4) : 320-327.
  • 7孙永梅,邱天爽.分数低阶α稳定分布噪声下HB加权自适应时间延迟估计新方法[J].信号处理,2007,23(3):339-342. 被引量:6
  • 8Xinyu Ma and C L Nikias. Joint estimation of time delayand frequency delay in impulsive noise using fractional lower order statistics [ J ]. IEEE Trans. on Signal Process- ing, 1996,44( 11 ) :2669-2687.
  • 9刘文红,汪源源,王斌.脉冲噪声下基于共变序列的自适应时延估计[J].系统工程与电子技术,2009,31(8):1781-1784. 被引量:1
  • 10Panayiotis G Georgiou and Panagiotis Tsakalides. Alpha- stable modeling of noise and robust time delay estimation in the presence of impulsive noise [ J ]. IEEE Trans. on Muhmedia, 1999,3 ( 1 ) :291-301.

二级参考文献40

  • 1邱天爽,王宏禹.一种HB加权的自适应时延估计器[J].电子科学学刊,1996,18(5):549-552. 被引量:5
  • 2Nikias C L, Shao M. Signal processing with Alpha-stable distributions[M]. New York : John Wiley & Sons Inc, 1995.
  • 3Huang Y, Benesty J, Elko G W. Adaptive eigenvalue decomposition algorithm for real time acoustic source localization system [C]//IEEE ICASSP, Phoenix, 1999 : 937 - 940.
  • 4Huang Y, Benesty J. A class of frequency-domain adaptive approaches to blind multichannel identification[J]. IEEE Trans. on Signal Processing, 2003, 51(1) : 11 - 24.
  • 5Liu W H, Qiu T S, McCallum R W, et al. Robust propagation velocity estimation of gastric electrical activity by least mean pnorm blind channel iclentification[J]. Medical & Biological Engineering & Computing, 2007, 45(5) :437 - 445.
  • 6Ma X Y. Robust signal processing in impulsive noise with stable distributions: estimation, identification and equalization [D]. Los Angeles : University of Southern California, 1996.
  • 7[1]Kong X, Qiu T. Latency change estimation for evoked potentials via frequency selective adaptive phase spectrum analyzer[J]. IEEE Trans Biomed Engineering,1999,46(8):1004-1012.
  • 8[2]Vaz CV, Thakor NV. Adaptive Fourier estimation of time varying evoked potentials[J]. IEEE Trans Biomed Engineering,1989,36(4):448-455.
  • 9[3]Kong X, Thakor NV. Adaptive estimation of latency changes in evoked potentials[J]. IEEE Trans Biomed Engineering,1996,43(2):189-197.
  • 10[4]Gupta L, et al. Nonlinear alignment and averaging for estimating the evoked potential[J]. IEEE Trans Biomed Engineering,1996,43(4):341-347.

共引文献16

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部