期刊文献+

热弹性方程多尺度建模

Multiscle Modeling of Thermoelasticity Equations
下载PDF
导出
摘要 用异质多尺度法(HMM)对稳态热弹性方程进行发现建模,并对此模型做了误差估计。 In this paper, we model stable thermoelasticity equations using heterogeneous multiscale method, and estimate the error.
作者 肖淳
出处 《东莞理工学院学报》 2013年第3期7-11,共5页 Journal of Dongguan University of Technology
基金 湛江市科技攻关项目(2011c3105015)
关键词 多尺度建模 热弹性 梯度功能材料 异质多迟度法 均匀化 multiscale modeling thermoelasticity functionally graded materials heterogeneous multiscale method homogenization
  • 相关文献

参考文献9

  • 1Horia I. Ene. On linear thermoelasticity of composite materials[ J]. Int J Engng Sci, 1983,21 (5) :443 -448.
  • 2Chen Z, Hou T Y. A mixed muhiseale finite element method for elliptic problems with oscillating coefficients[ J]. Math Comp ,2002,21:541 - 576.
  • 3Yau H T. Asymptotic solutions to dynamics of many-body systems and classical continuum equations[ M]. In Current Development in Mathemat- ics, International Press, 2000.
  • 4Chou S I, Wang C C. Estimates of error in finite element approximate solutions to problems in linear thermoelastieity[ J]. Springer Berlin/Hei- delberg, 1981.
  • 5E W, Ming P B, Zhang P W. Analwsis of the heterogeneous multiscale method for elliptic homogenization problems [ J ]. Jamer Math Soc, 2003, 18(1) :121 -156.
  • 6Babuska I, Osborn J E. Generalized finite element methods: Their performance and their relation to mixed methods[ J]. SIAM Number Anal, 2003, 20(3) :510 -536.
  • 7Hughes J R, Feijoo Gonzalo R, Mazzei Luea, et al. The variational muhiseale method -A paradigm for computational mechanics[ J]. Compt Methods Appl Meeh Engrg, 1998,166:3 - 24.
  • 8Hou Y, Wu X H, Cai Z Q. Convergence of a multiscale finite Mathematics of Computation, 1999,68 ( 227 ) :913 - 943.
  • 9Clarlet P G. The finite dement method for elliptic provlems[ J] element method for elliptic problems with rapidly oscillating coefficients [ J ] SIAM, 2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部