期刊文献+

MTPT方法估计机载SAR残余运动的两个影响因素

Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT
下载PDF
导出
摘要 由于导航系统测量精度的限制,载机的位置经常存在厘米级的误差,该误差称为残余运动误差。对于机载超高分辨SAR系统或机载重轨干涉SAR,必须估计并补偿该残余运动误差。MTPT方法可以估计单幅SAR图像中的残余运动误差,但是速度和斜距的误差会影响该方法的精度。该文在详细分析速度和斜距误差对MTPT方法进行残余运动估计的影响的基础上,利用仿真和实测SAR数据验证了这一点。同时还指出,MTPT方法虽然可以估计速度和斜距误差,但是它们的精度敏感于相位测量误差;在利用MTPT方法进行估计之前必须先利用其它更为准确的方法消除平台的速度误差和目标的斜距误差。 Due to the poor accuracy of navigation systems, deviations of the order of centimeters between the real and measured trajectories, called residual motion errors, frequently occur ill SAR images. For airborne SAR systems with very high resolution and airborne repeat-pass SAR interferometry, the residual motion errors must be estimated and compensated. Multi-squint Technique with Point Targets (MTPT) is able to estimate the residual motion errors for an individual SAR image, but errors in the platform velocity and the slant range will deteriorate the accuracy of the method. In this paper, we validate this by performing detailed analysis of the velocity and slant range to residual motion error estimation using both simulated arid real SAR data. It is also shown that MTPT is able to estimate the errors in the velocity and slant range, and it is sensitive to the phase error. Therefore, it is advised that the errors in the velocity and slant range should be removed using other precise methods before MTPT is utilized to estimate the residual motion errors.
出处 《雷达学报(中英文)》 CSCD 2013年第2期180-186,共7页 Journal of Radars
基金 国家高技术发展计划"863"项目(2011AA120404)资助课题
关键词 机载SAR 残余运动 速度误差 斜距误差 Airborne SAR Residual motion error Velocity error Slant range error
  • 相关文献

参考文献15

  • 1Moreira A and Huang Y. Airborne SAR processing of highly squinted data using a chip scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029-1040.
  • 2Reigber A, Alivizatos A, Potsis A, et al.. Extended wavenumber-domain Synthetic Aperture Radar focusing with integrated motion compensation[J]. IEE Proceeding-Radar, Sonar and Navigation, 2006, 153(3): 301-310.
  • 3Macedo K and Scheiber R. Precise Topography-and Aperture-Dependent motion compensation for airborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 172-176.
  • 4Prats P, Reigber A and Mallorqui J. Topography-dependentmotion compensation for repeat-pass interferometric SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 206-210.
  • 5Cantalloube H and Dubois-Fernandez P. Airborne X-braid SAR imaging with 10 cm resolution: technical challenge and preliminary results[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 163-176.
  • 6Prats P, Scheiber R, Reigber A, et aL. Estimation of the surface velocity field of the Aletsch glacier using multibaseline airborne SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 419-430.
  • 7Prats P, Reigber A, Mallorqui J, et al.. Estimation of the temporal evolution of the deformation using airborne differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1065-1078.
  • 8Macedo K, Scheiber R, and Moreira A. An autofocus approach for residual motion errors with application to airborne repeat- pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151-3162.
  • 9Reigber A, Mercer B, Prats P, et al.. Spectral diversity methods apphed to DEM generation from repeat-pass P-band InSAR[C]. In Proceedings of 6th European Conference on Synthetic Aperture Radar (EUSAR'06), Dresden, 2006.
  • 10Zhong Xue-liml, Guo Hua-dong, Xiang Mao-sheng, et al.. Residual motion estimation with point targets mid its application to airborne repeat-pass SAR interferometry[J]. International Journal of Remote Sensing, 2012, 33(3): 762- 780.

二级参考文献11

  • 1Cantalloube H,Dubois-Fernandez P. Airborne X-band SAR imaging with 10cm resolution: technical challenge and preliminary results. IEE Proc Radar Sonar Navig,2006, 153(2): 163-176.
  • 2Reigber A, Papathanassiou K. Correction of residual mo- tion errors in airborne repeat-pass interferometry. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001. 3077- 3079.
  • 3Prats P, Mallorqui J J. Estimation of azimuth phase undu- lations with multisquint processing in airborne interfero- metric SAR images. IEEE Trans Geosci Remote Sens, 2003, 41 (6) :1530-1533.
  • 4Reigber A, Prats P, Mallorqui J J. Refined estimation of time-varying baseline errors in airborne SAR interferome- try. IEEE Geosci Remote Sens Lett, 2006, 3 ( 1 ) : 145- 149.
  • 5Prats P, Scheiber R, Reigber A, et al. Estimation of the surface velocity field of the Aletsch glacier using multi- baseline airborne SAR interferometry. IEEE Trans Geosci Remote Sen.s, 2009, 47(2) : 419-430.
  • 6Macedo K A C de, Scheiber R, Moreira A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry. IEEE Trans Geosci Remote Sens, 2008, 46(10) : 3151-3162.
  • 7Fomaro G, Franceschetti G, Pema S. Motion compensa- tion errors : effects on the accuracy of airborne SAR ima- ges. IEEE Trans Aerosp Electron Syst, 2005, 41 ( 4 ) : 1338-1352.
  • 8Wahl D, Eichel P, Ghiglia D, et al. Phase gradient auto- focus-A robust tool for high resolution SAR phase correc- tion. IEEE Trans Aerospace and Electronic Systems, 1994, 30(3): 827-835.
  • 9Wei Y, Soon Y T, Zheng B. Weighted least-squares esti- mation of phase errors for SAR/ISAR autofocus. IEEE Trans Geosci Remote Sens, 1999, 37(5) : 2487-2494.
  • 10Macedo K A C de, Scheilber R. Precise iopography- and aperture-dependent motion compensation for airborne SAR. IEEE Geosci Remote Sens Lett, 2005, 2(2) : 172- 176.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部