期刊文献+

线性分式和规划问题的全局优化算法 被引量:1

Global Optimization Algorithm for Sum of Linear Ratios Problem
下载PDF
导出
摘要 提出一种求解线性分式和规划问题的分支定界算法.该算法首先利用等价转换技巧构造出原问题的等价问题,然后通过凹凸性包络技术建立等价问题中目标函数与约束函数的下逼近函数,得到其线性松弛规划,从而将原来的非凸规划问题转化为一系列线性规划问题,以确定原问题最优值的下界.从理论上证明了算法的收敛性,并用数值试验验证了算法的可行性和有效性. In this paper,a branch and bound algorithm is proposed for globally solving sum of linear ratios problem. In our algorithm, an equivalence problem is derived by using equivalence transformation technique. A linear relaxation programming of the equivalence problem can be constructed by basing upon the convex envelopes and concave envelopes technique. Thereby, the initial problem can be converted to a sequence of linear programming problem, and determine the global optimum's lower bound. The conver-gence of the algorithm is proved, and numerical experiments show that the proposed algorithm is feasible and effective.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2013年第3期259-263,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11161001) 北方民族大学科研项目(2013XYZ025)
关键词 全局优化 线性分式和规划 分支定界 线性松弛 global optimization sum of linear ratios linear programming branch and bound relaxa-tion programming
  • 相关文献

参考文献8

  • 1Maranas C D,Androulakis I P, Floudas C A, et al. Solving longterm financial planning problems via global optimization [J]. Journal of Economic Dynamics and Control,1997,21:1405-1425.
  • 2Konno H,Watanabe H. Bond portfolio optimization problems and their application to index tracking: a partial optimiza- tion approach [J] Journal of Operations Research Society of Japan, 1996,39:285-306.
  • 3Konno H,Abe N. Minimization of the sum of three linear fractional functions [J]. Journal of Global Optimization,2002, 15..419-432.
  • 4Hongwei Jiao,Qigao Feng,Peiping Shen,et al. Global optimization for sum of linear ratios problem using new pruning technique [J]. Mathematics Problems in Engineering, 2008,2008 : 1-13.
  • 5Benson H P. Solving sum of ratios fractional programs via concave minimization [J]. Journal of Optimization Theory and Applications, 2007,135 : 1-17.
  • 6Majid Jaberipour,Esmaile Khorram. Solving the sum-of-ratios problems by a harmony search algorithm [J]. Journal of Computational and Applied Mathematics, 2010,234 : 733-742.
  • 7Peiping Shen,Yuan Ma,Yongqiang Chen. Global optimization for the generalized polynomial sum of ratios problem[J] Journal of Global Optimization, 2011,50 : 439-455.
  • 8井霞,高岳林.线性分式和规划问题的分母输出空间分支定界算法[J].河南师范大学学报(自然科学版),2011,39(4):1-5. 被引量:2

二级参考文献5

  • 1Konno H,Watanabe H.Bond portfolio optimization and their application to index tracking[J].Journal of the Operations Society of Japan,1996,39:295-306.
  • 2Konno H,Yajima Y,Matsui T.Parametric simplex algorithms for solving a special class of nonconvex minimization problem[J].Journal of Global Optimization,1991 (1):65-81.
  • 3Konno H,Abe N.Minimization of the sum of three linear fractional functions[J].Journal of Global Optimization,2002,15:419-432.
  • 4Wang Y J,Shen P P,Liang Z A.A branch-and-bound algorithm to globally solve the sum of several linear ratios[J].Applied Mathematics and Computation,2005,168:89-101.
  • 5Shen P P,Wang C F.Global optimization for sum of generalized fractional functions[J].Journal of Computational and Applied Mathematics,2008,214:1-12.

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部