摘要
为了在软件可信性评估过程中支持动态多属性的特征,提出了一种结合灰数系统理论、Minkowski距离和模糊聚类的评估方法。首先,以灰数来表示软件可信指标值,并以求正负理想点的方法获得理想可信评估值;然后,使用Minkowski距离对周期内的软件可信性进行评估;最后使用模糊聚类算法得到综合的可信性评估结果。实验结果及分析表明,所提方法对于软件可信性的动态、多属性评估是有效的,在计算量不大的同时,评估结果也具有较高的准确性。
In order to support dynamic and multi-attribute characteristics in software trustworthiness evaluation, a method was proposed with the grey number and the Minkowski distance function and fuzzy clustering algorithm. Firstly, trustworthy indicators are represented by gray numbers, and the ideal trustworthy indicators are calculated from the positive and negative ideal points. Secondly, the trust- worthiness for each evaluation period is computed through the weighted grey number Minkowski dis- tance function. Finally, the fuzzy clustering algorithm is adopted to aggregate the evaluations from each period. Experimental results and analysis show that the proposed method is effective and high accuracy, and does not cause more computational burden.
出处
《计算机工程与科学》
CSCD
北大核心
2013年第6期107-112,共6页
Computer Engineering & Science
基金
国家自然科学基金资助项目(40806011)
淮海工学院自然科学研究项目(2010150028)
连云港产学研联合创新基金项目(CXY1203)
关键词
软件可信性评估
动态
灰数
正负理想点法
Minkowski距离
模糊聚类算法
software trustworthiness evaluation
dynamic
gray number
positive and negative idealpoint
Minkowski distance
fuzzy clustering algorithm