期刊文献+

具有非线性传染率的时滞SIQR模型的稳定性分析

The Delayed SIQR Epidemic Model with Nonlinear Incidence Rate
下载PDF
导出
摘要 建立了具有时滞及非线性发生率的SIQR传染病模型,通过对无病平衡点和正平衡点处的特征方程的讨论,可得到在这两个平衡点处的局部渐近稳定性,进而得到了系统在两个平衡点处的全局渐近稳定性. A model is formulated for the delayed SIQR epidemic with nonlinear incidence rate. By the analysis of disease-free equilibrium and positive equilibrium, local asymptotic stability of the positive equilibrium point is obtained and then the global asymptotic stability of the two equilibriums is obtained.
作者 张栋
出处 《沧州师范学院学报》 2013年第2期16-18,共3页 Journal of Cangzhou Normal University
关键词 传染病 局部渐近稳定性 全局渐近稳定性 无病平衡点 正平衡点 Infectious disease local asymptotic stability global asymptotic stability disease-free equilibrium Positive equilibrium point
  • 相关文献

参考文献2

二级参考文献12

  • 1靳祯,马知恩,韩茂安.GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DELAYS[J].Acta Mathematica Scientia,2006,26(2):291-306. 被引量:14
  • 2Cooke K L.Stability analysis for a vector disease model.Rocky Mount J Math,1979,9:31-42
  • 3Busenberg S,Cooke K L.Periodic solutions of a periodic nonlinear delar differential equation.SIAM J Appl Math,1978,35:704-721
  • 4Marcati P,Pozio A M.Global asymptotic stability for a vector disease model with spatial spread.J Math Biol,1980,9:179-187
  • 5Volz R.Global asymptotic stability of a periodic solution to an epidemic model.J Math Biol,1982,15:319-338
  • 6Takeuchi Y,Ma W,Edoardo B.Global asymptotic properties of a delay SIR epidemic model with finite incubation times.Nonlinear Anal,2000,42:931-947
  • 7Kuang Y.Delay Differential Equations with Applications in Population Dynamics.San Diego:Academic Press,1993
  • 8Thieme H.Persistence under relaxed point-dissipativity.SIAM J Appl Math,1993,24:407-435
  • 9Beretta E,Takeuchi Y.Global stability of an SIR epidemic model with time delays.J Math Biol,1995,33:250-260
  • 10Beretta E,Takeuchi Y.Convergence results in SIR epidemic model with varying population size.Nonlinear Anal,1997,28:1909-1921

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部