期刊文献+

延迟积分微分方程二步Runge-Kutta法渐近稳定性分析

Asymptotic stability of two step Runge-Kutta method for systems of delay-integro-differential equations
下载PDF
导出
摘要 研究具有多个延迟的向量形式的延迟积分微分方程(DIDEs),给出渐近稳定的相关定义,构造并证明A-稳定的二步Runge-Kutta方法求解延迟积分微分方程(DIDEs)渐近稳定的条件。 It presents the asymptotic stability of systems of delay-integro-differentia equations (DIDEs), which has different delays in the entries of the vector valued unknown functions. A-stable two step Runge- Kutta method is the basic condition for systems of delay-integro-differential equations.
出处 《黑龙江工程学院学报》 CAS 2013年第2期78-80,共3页 Journal of Heilongjiang Institute of Technology
基金 黑龙江省教育厅科研资助项目(12523039)
关键词 渐近稳定 延迟积分微分方程 数值方法 二步Runge-Kutta方法 asymptotic stability delay-integro-differential equation numerical method two step Runge- Kutta method
  • 相关文献

参考文献11

  • 1BrenanK E,Campbell S L,Petzold L R. Numerical So-lution of Initial-Value Problem in Differential-AlgebraicEquations[M]. 2nd ed Philadephia:SIAM,1995.
  • 2HairerE,Norsett S P,Wanner G. Solving OrdinaryDifferential-Algebraic Equations and Differential-Alge-braic Problems[M]. NewYork:Springer,1992.
  • 3Petzold L R. Numerical Solutions of Differential-Alge-braic Equations[M]. Oxford:Clarendon Press,1995.
  • 4BraytonR K,Willoughby R A. On the numerical integra-tion of a symmetric system of difference-differential equa-tions of neutral type[J]. J. Math. Anal. Appl. 1967,18:182-189.
  • 5ZhuW J,Petzold L R. Asymptotic stability of linear de-lay differential-algebraic equations and numerical methods[C]. Appl. Numer. Math. 1997,24:247-264.
  • 6喻全红,孙乐平,李勇.线性多步法求解广义中立型滞时微分代数方程组的渐近稳定性(英文)[J].系统仿真学报,2009,21(20):6432-6435. 被引量:2
  • 7Butcher J C. The Numerical Analysis of Ordinary Differ-ential Equations[M]. New York:John Wiley & Sons.Chichester,1987.
  • 8WangQ,Cong Y H,Li J J. Stability of two-step Runge-Kutta methods for neutral delay-integro-differential-alge-braic equations[J]. Journal of Shanghai Normal Universi-ty(Natural Sciences). 2010;39(6)-,551-557.
  • 9AscherU M,Petzold L R. The numerical solution of de-lay-differential-algebraic equations of retarded and neutraltype[J]. SIAM J. Numer. AnaL 1995,32:1635-1657.
  • 10Lancaster,P,TismenetskyM. The Theory of Matrices[M]. Orlando:Academic,1985.

二级参考文献4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部