期刊文献+

决策树分类方法在水轮机组故障诊断的应用研究 被引量:3

Decision Tree Classification for Fault Diagnosis of Hydro-turbine Generating Unit
下载PDF
导出
摘要 由于引起水轮发电机组振动的原因较为复杂,检修人员通常很难全面把握故障征兆确定故障原因。针对此对C4.5决策树分类算法进行研究,应用决策树分类的方法对水电机组故障征兆进行分类。该方法利用典型水电机组故障特征向量建立故障诊断决策树,从而实现对水电机组振动故障的诊断。 Due to the complexity of the causes of hydropower unit vibration, the maintenance staff it is often difficuh to fully grasp the fault symptoms to determine the cause of the problem. This paper focuses on the C4.5 decision tree learning algorithm, application of decision tree classification method to fault diagnosis of hydroelectric units. The party through the typical fault characteristics to establish fault diagnosis decision tree, and finally implement the classification of the fault features of hydropower unit vector.
作者 张东利
出处 《电网与清洁能源》 2013年第6期92-94,共3页 Power System and Clean Energy
关键词 水轮机组 故障分类 决策树 数据挖掘 hydroelectric units fault classification tree classification datamining
  • 相关文献

参考文献9

二级参考文献65

共引文献216

同被引文献26

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部