期刊文献+

小形变轧制316L奥氏体不锈钢退火过程中Σ3~n晶粒团簇的特征 被引量:2

Character of Σ3~n Grain Cluster of 316L Austenitic Stainless Steel with Low Strain in Annealing
下载PDF
导出
摘要 采用电子背散射衍射(EBSD)技术对经5%冷轧形变的316 L奥氏体不锈钢在随后高温退火过程中Σ3n晶粒团簇及其内部晶粒取向的演变进行了原位追踪。结果发现Brass({110}<112>),Copper({112}<111>),Br1{110}<111>和Goss{011}<100>取向(包括它们的几何变体)的晶粒在形变应力梯度作用下优先长大,这些晶粒取向大都符合Σ3n界面关系并趋于成长为大尺寸的Σ3n晶粒团簇。 The evolution of grain orientation within cluster of grains interfaced by ∑3n boundaries was in-situ traced in the 316L austenitic stainless steel treated by 5% cold rolling and subsequent high-temperature annealing by means of EBSD technology. The results show that oriented growth of Brass ({110} 〈 112〉), Copper ({112} 〈 111 〉), Brl {110} 〈 111〉 and G oss {011} 〈100〉 orientations (including their geometric variants) occurs under the driving force of strain gradient introduced by slight cold rolling. These grain orientations are related by ∑3n boundaries and their growth advantage are responsible for developing the large-sized ∑ 3n grain clusters.
出处 《热加工工艺》 CSCD 北大核心 2013年第12期192-196,共5页 Hot Working Technology
基金 国家自然科学基金资助项目(50974147) 山东省自然科学基金资助项目(2009ZRB01176)
关键词 奥氏体不锈钢 晶界特征分布 晶粒团簇 austenitic stainless steel grain boundary character distribution grain cluster
  • 相关文献

参考文献17

  • 1Watanabe T. An approach to grain-boundary design for strong and ductile polycrystal [J]. Res. Mech., 1984,11(1):47-84.
  • 2Palumbo G, Lehoceky E M, Lin P. Applications for grain boundary engineered materials [J]. JOM,1998,50(2):40-43.
  • 3Cheung C, Erb U, Palumbo G. Application of grain boundary engineering concepts to alleviate intergranular cracking in alloys 600 and 690 [J]. Mater. Sci. Eng., 1994,A185(1-2):39-43.
  • 4Lehoceky E M. Palumbo G, Lin P. Improving the weldability and service performance of nickel-and iron-based superalloys by grain boundary engineering [J]. Metallurgical and Materials Transactions, 1998, A29(12): 3069-3079.
  • 5Zhou Y, Aust K T, Erb U, et al. Application of grain boundary engineering for improved intergranular carbide precipitation resistant in 304L stainless steel [J]. Proceedings From Processing and Fabrication of Advanced Materials X, 2001,5-8 : 438-446.
  • 6Spigarelli M, Cabibbo M, Evangelista E, et al. Analysis of the creep strength of a low-carbon AISI 304 steel with low-grain boudaries[J]. Mater. Sci. Eng. ,2003,352:93-99.
  • 7Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-nduced grain boundary engineering [J]. Acta. Metall, 2002,50(15) : 2331-2341.
  • 8Kokawa H. Weld decay-resistant austenitic stainless steel by grain boundary engineering [J]. Journal of Materials Science, 2005,40: 927-932.
  • 9Basinger J A, Homer E R, Fullwood D T, et al . Two-dimensional grain boundary percolation in alloy 304 stainless steel[J]. Scripta Materialia, 2005,53 : 959-963.
  • 10Tsurekawa S, Nakamichi S, Watanabe T. Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel [J]. Acta. Mater., 2006,54: 3617-3626.

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部