期刊文献+

基于多期DEM数据的滑坡变形定量分析 被引量:3

Quantitative deformation analysis of landslides based on multi-period DEM data
下载PDF
导出
摘要 滑坡的定量变形分析是滑坡研究中的难点问题。为揭示黑方台灌区滑坡的变形演化过程,借助1977年、1997年、2001年和2010年4个时期测制的地形图资料,以ArcGIS为平台,建立了基于多期DEM数据的滑坡变形定量分析模型,并对黑方台塬边32处滑坡分阶段进行了变形量与变形速率计算。1977—1997年,滑坡后壁后移侵蚀速率平均为4.47m/a;1997—2001年,后移侵蚀率平均为3.46m/a;2001—2010年,后移侵蚀率平均为1.10m/a。同时建立了灌溉量与滑坡变形量的相关关系式,并对滑坡的变形演化趋势进行了预测,到2015年,滑坡后壁后移距离平均为0.79m,到2020年,滑坡后壁后移距离可减少到0.20m。 Quantitative deformation analysis of the landslide is a difficult problem in landslide study. To reveal the deformation and evolution process of landslides in Heifangtai, the authors established the quantitative deformation analysis model of landslide based on multi-period DEM data by ArcGIS using four periods of topographic maps obtained respectively in 1977, 1997, 2001, and 2010. The deformation degree and rate of 32 landslides were calculated in stages at Heifangtai terrace in Yongjing, Gansu Province. Between 1977 and 1997, the average retrograde eroding velocity of landslide scarp was 4.47m/a. Between 1997 and 2001, the average retrograde eroding velocity of landslide scarp was 3.46m/a. Between 2001 to 2010, the average retrograde eroding velocity of landslide scarp was 1.10m/a. At the same time, the related formula for irrigation amount and landslide deformation degree was established, and the prediction of the development tendency of landslides was carried out. The calculation results show that the average retrograde distance of the landslide scarps will be 0.79m by 2015, and the retrograde distance will be reduced to 0.20m by 2020.
出处 《地质通报》 CAS CSCD 北大核心 2013年第6期935-942,共8页 Geological Bulletin of China
基金 中国地质调查局项目(编号:1212011014024 1212010640330) 国家科技支撑计划课题(编号:2012BAK10B02)
关键词 黑方台 滑坡 DEM 变形分析 Heifangtai landslide DEM deformation analysis
  • 引文网络
  • 相关文献

参考文献9

  • 1杨建国,晏鄂川,程温鸣.滑坡变形特征的GPS监测信息识别研究[J].长江科学院院报,2012,29(3):24-28. 被引量:12
  • 2侯建国,张勤,杨成生.InSAR技术及其在地质灾害中的应用[J].测绘与空间地理信息,2007,30(6):28-30. 被引量:10
  • 3丁瑜,王全才,石书云,崔明.基于深部监测的滑坡动态特征分析[J].工程地质学报,2011,19(2):284-288. 被引量:16
  • 4Daisaku Kawabata, Joel Bandibas. landslide susceptibility mapping using geological data, a DEM from ASTER mlages and an Artificial Neural Network (ANN)[J].Geomorphology, 2009, 113: 97-109.
  • 5Daniele Casalbore, Claudia P,.omagnoli, Alessandro Bosman, et al. Potential tsunamigenic landslides at Stromboli Volcano (Italy): Insight from marine DEM analysis[J]. Geomorphology, 2011, 126: 42-50.
  • 6Junko Iwahashi, Izumi Kamiya, Hiromitsu Yamagishi. High-resolu- tion DEMs in the study of rainfall- and earthquake-induced landslides: Use of a variable window size method in digital terrain analysis [J]. Geomorphology, 2012, (153/154): 29-38.
  • 7Guido Ventura, Giuseppe Vilardo, Carlo Terranova, et al. Tracking and evolution of complex active landslides by multi-temporal air- borne LiDAR data: The Montaguto landslide (Southern Italy)[J]. Re- mote Sensing of Envirormlent, 2011, 115: 3237-3248.
  • 8Dewitte O, Jasselette J C, Comet Y, et al. Tracking landslide dis- placements by multi temporal I)TMs: A combined aerial stereopho- togrammetric and LIDAR approach in western Belgium[J]. Engineer- ing Geology, 2008, 99:11-22.
  • 9李志林,朱庆.数字高程模型[M].武汉武汉大学出版社,2000.

二级参考文献22

共引文献35

同被引文献52

引证文献3

二级引证文献19

;
使用帮助 返回顶部