期刊文献+

钛合金锥形件挤压成形工艺及模具优化 被引量:2

Extrusion Forming Process and Die Optimizing for Titanium Alloy Taper
下载PDF
导出
摘要 为了实现钛合金锥形挤压成形,设计了直接成形、两道次成形和复合成形工艺方案。通过DEFORM3D模拟软件分析,对比了成形载荷和生产效率,选择了最佳的挤压成形工艺。结果表明:采用直接成形,其成形最大载荷为11.5 MN;采用两道次成形工艺,成形载荷仅为4.25 MN,但两道工序完成工件成形,成形效率较低。采用复合成形工艺,成形载荷仅为直接成形的38.6%,且一道次成形,具有较高的生产效率。 In order to realize the forming of a titanium alloy taper, direct extrusion forming process, two-stage extrusion forming process and composite extrusion forming process were designed. The forming loads and production efficiency were contrasted by analysis of Deform finite element software. The best extrusion forming process was selected. The results show that: in the direct extrusion forming process, the maximum load is 11.5MN; in the two-stage extrusion forming process, the maximum load is only 4.25MN, but it has a poorer effectiveness for two-stage forming process;in the composite extrusion forming process, the maximum load is only 38.6% of direct forming process, and it has a higher effectiveness for one-stage forming process.
出处 《热加工工艺》 CSCD 北大核心 2013年第13期106-108,111,共4页 Hot Working Technology
基金 浙江省科技厅公益技术研究工业项目(2011C21074)
关键词 FEM 挤压 模具结构 优化 FEM extrusion die structure optimization
  • 相关文献

参考文献5

  • 1Chen Mim,Zhao rleke. Ti Alloys and Application[M]. Bei-jing: Metallurgical Industry Press, 1989.
  • 2Qian Jiuhong. Research and application of new aerospace tita- nium alloys[J]. Rare Metals,2000,24(3): 5-6.
  • 3Li Mingyi. Aerospace Structural Material [J]. Nonferrous met- als industry in the world,2000,(6):7-8.
  • 4Williams J C. Aitemate materials choices-some challenges to the increased use of Ti alloys [J]. Materials Science and Engi- neering, 1999,26(3): 107-111.
  • 5王清,李中华,孙东立,武高辉.TC4钛合金的热变形行为及其影响因素[J].材料热处理学报,2005,26(4):56-59. 被引量:36

二级参考文献14

  • 1Seshacharyulu T, Medeiros Steve C, et al. Unstable flow during supratransus working of Ti-6Al-4V[J]. Materials Letters ,2001,47(3) :133 ~ 139.
  • 2Rosen R S, Paddon S P, KassneM E r. The variation of the yield stress of Ti alloys with strain rate at high temperatures [ J ]. Journal of Materials Engineering and Performance, 1999, 8(3) :361 ~ 367.
  • 3Seshacharyulu T, Medeiros S C, Morgan J T. Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) Ti-6Al-4V[J].Materials Science and Engineering,2000, A279( 1-2):289 ~ 299.
  • 4Huang C, Lai K L, Lee C S. Deformation characteristics of Ti-24Al-14Nb-3V-0.5Mo alloy during hot compression[J]. Journal of Materials Processing Technology,1998,73(1-3): 119 ~ 124.
  • 5PrasadYVRK, SeshacharyuluT, Mdediros S C,et al. Effect of priorβ-grain size on the hot deformation behavior of Ti-6Al-4V:coarse vs coarse[J].Journal of Materials Engineering and Performance, 1999,9(2): 153 ~ 160.
  • 6Wang Q, Sun D L, Li Z H. Compression characteristic and tensile property in an (α + β) type titanium alloy at high temperature[ A]. Proceedings of Asian Pacific Conference for Fracture and Strength'04[ C ]. Korea, 2004:127.
  • 7Prasad Y V R K, Seshacharyulu T, et al. Titanium alloy processing[J]. Advanced Materials & Processes, 2000,6:85 ~ 89.
  • 8Semiatin S L, Delo D P. Equal channel angular extrusion of difficult-to-work alloys[J]. Materials & Design,2000,21(4) :311 ~ 322.
  • 9Kaibyshev O A. Grain refinement in commercial alloys due to high plastic deformations and phase transformations[J]. Journal of Materials Processing Technology,2001,117(3) :300 ~ 306.
  • 10Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J]. Acta Mater, 2001,49(17): 3565 ~ 3573.

共引文献35

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部