期刊文献+

Handling Error Propagation in Sequential Data Assimilation Using an Evolutionary Strategy 被引量:1

Handling Error Propagation in Sequential Data Assimilation Using an Evolutionary Strategy
下载PDF
导出
摘要 An evolutionary strategy-based error parameterization method that searches for the most ideal error adjustment factors was developed to obtain better assimilation results. Numerical experiments were designed using some classical nonlinear models (i.e., the Lorenz-63 model and the Lorenz-96 model). Crossover and mutation error adjustment factors of evolutionary strategy were investigated in four aspects: the initial conditions of the Lorenz model, ensemble sizes, observation covarianee, and the observation intervals. The search for error adjustment factors is usually performed using trial-and-error methods. To solve this difficult problem, a new data assimilation system coupled with genetic algorithms was developed. The method was tested in some simplified model frameworks, and the results are encouraging. The evolutionary strategy- based error handling methods performed robustly under both perfect and imperfect model scenarios in the Lorenz-96 model. However, the application of the methodology to more complex atmospheric or land surface models remains to be tested. An evolutionary strategy-based error parameterization method that searches for the most ideal error adjustment factors was developed to obtain better assimilation results. Numerical experiments were designed using some classical nonlinear models (i.e., the Lorenz-63 model and the Lorenz-96 model). Crossover and mutation error adjustment factors of evolutionary strategy were investigated in four aspects: the initial conditions of the Lorenz model, ensemble sizes, observation covarianee, and the observation intervals. The search for error adjustment factors is usually performed using trial-and-error methods. To solve this difficult problem, a new data assimilation system coupled with genetic algorithms was developed. The method was tested in some simplified model frameworks, and the results are encouraging. The evolutionary strategy- based error handling methods performed robustly under both perfect and imperfect model scenarios in the Lorenz-96 model. However, the application of the methodology to more complex atmospheric or land surface models remains to be tested.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1096-1105,共10页 大气科学进展(英文版)
基金 supported by the NSFC (National Science Foundation of China) project (Grant Nos. 41061038 and 40925004) project "Land Surface Modeling and Data Assimilation Research" (Grant No. 2009AA122104) from the National High Technology Research One Hundred Person Project of the Chinese Academy of Sciences "Multi-sensor Hydrological Data Assimilation for Key Hydrological Variables in Cold and Arid Regions" (Grant No. 29Y127D01)
关键词 data assimilation error propagation evolutionary strategies data assimilation, error propagation, evolutionary strategies
  • 相关文献

参考文献2

二级参考文献23

共引文献36

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部