期刊文献+

直流电弧原位冶金制备粗晶碳化钨块体复合材料 被引量:5

Coarse-grain bulk WC composites prepared by direct current arc in-situ metallurgy
下载PDF
导出
摘要 利用直流电弧原位冶金技术制备粗晶碳化钨块体复合材料,并利用X射线衍射仪、电子探针等对其物相组成、微观组织、W与C反应过程和WC生长形态演变机制进行研究。结果表明:碳化钨复合材料的主要硬质相为WC和W2C;当自耗电极长度增加时,WC含量降低,但晶粒尺寸增大,最大晶粒尺寸约为100μm。在原位冶金过程中,W和C元素通过溶解进入熔池发生扩散反应,逐步形成W2C和WC。WC生长形态由六棱柱演变为三棱柱,生长方式为小平面晶体台阶侧向长大;当达到临界过冷度时,WC晶粒迅速生长。 Coarse-grain bulk WC composites were prepared by direct current arc in-situ metallurgy. The examination of phase composition and microstructure for the materials, reaction process of W and C as well as transformation mechanism for WC morphologies was carried out by X-ray diffractometry and electron probe micro-analysis. The results show that WC and W2C are the main hard phases in the composites. Furthermore, the WC content decreases but the grain sizes of WC increase with increasing the length of consumable electrode, and the largest WC grains can reach about 100 μm. During the process of in-situ metallurgy, W and C dissolve and interdiffuse in the molten pool. As a result, W2C and WC form successively. The WC growth morphology is triangular prism that transforms from hexangular prism, and the growth pattern of WC is lateral growth layer by layer of the facet crystals. The WC grains can grow rapidly when undercooling reaches the critical value.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第5期1262-1268,共7页 The Chinese Journal of Nonferrous Metals
基金 青岛市科技发展计划项目(12-1-4-6-(4)-jch) 山东省博士基金资助项目(BS2010CL038)
关键词 碳化钨 复合材料 粗晶 直流电弧原位冶金 生长形态 WC composites coarse-grains direct current arc in-situ metallurgy growth morphology
  • 相关文献

参考文献9

二级参考文献100

共引文献88

同被引文献71

  • 1江垚,贺跃辉,黄伯云,袁朝晖.NiAl金属间化合物的研究进展[J].粉末冶金材料科学与工程,2004,9(2):112-120. 被引量:7
  • 2张宇,钟敏霖,刘文今.送粉激光熔覆合成制备WC/Ni硬质合金涂层及其耐磨性[J].金属热处理,2005,30(11):1-5. 被引量:26
  • 3王双喜,刘雪敬,孙家森.铝基复合材料的制备工艺[J].热加工工艺,2006,35(1):65-69. 被引量:33
  • 4赵敏海,刘爱国,郭面焕.WC颗粒增强耐磨材料的研究现状[J].焊接,2006(11):26-29. 被引量:41
  • 5SPOWART J E, MIRACLE J B. The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminum[J]. Materials Science and Engineering, 2003, 357: 111-123.
  • 6TANAKA K, AKINIWA Y, SHIMIZU K, KIMURA H, ADACHI S. Fatigue thresholds of discontinuously reinforced aluminum alloy correlated to tensile strength[J]. International Journal of Fatigue, 2000, 22:431-439.
  • 7IRFAN M A, PRAKASH V. Dynamic deformation and fracture behavior of novel damage tolerant discontinuously reinforced aluminum composites[J]. International Journal of Solids and Structures, 2000, 37: 4477-4507.
  • 8MIRACLE D B, PANDEY A B, MAJUMDAR B S. Laminated particulate-reinforced aluminum composites with improved toughness[J]. Acta Materialia, 2001, 49: 405-417.
  • 9LIOYD D L Particle reinforced aluminium and magnesium matrix composites[J]. Inter Mater Rev, 1994, 39: 1-9.
  • 10SHIONO T, NODA K. Fabrication of ceramic composites consisting of powders with different specific gravity by the slip-casting technique[J]. J Mater Sci, 1997, 32: 2665-2678.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部