期刊文献+

金电极自组装基因分子膜的制备及电化学检测

Preparation and electrochemical determination of gold electrode modified with thiolated capture probe through self-assembling
下载PDF
导出
摘要 采用分子自组装技术制备巯基修饰的基因分子膜修饰金电极,用于竞争式杂交检测黄孢原毛平革菌木素过氧化物酶编码基因。通过差分脉冲伏安法、循环伏安法、交流阻抗法和电流—时间曲线法优化自组装时间和信号探针的最佳响应浓度,研究目标基因的线性检测范围和再生性能。结果表明:修饰金电极最优自组装时间为15 h,信号探针的最佳响应浓度为0.51×10-6 mol/L,目标基因的线性检测范围为7.51×10-12-1.05×10-9 mol/L,检测下限为7.51×10-13 mol/L。该修饰电极具有良好的再生性能。 A gold electrode with thiolated capture probe through self-assembling based on the competitive hybridization for detection of target sequence of lignin peroxidase (lip) gene of Phanerochaete chrysosporium was developed. Following hybridizations with competitively hybridized with the target nucleic acid and biotinylated response probe, streptavidin-horseradish peroxidase (HRP) conjugate was applied to the electrode. The electrochemical behavior was analyzed by cyclic voltammetry, electrochemical impedance spectroscopy, current--time curve and differential pulse voltammetry. The results show that the best time for self-assembling is 15 h, and the optimum concentration of response probe is 0.51×10^-6 mol/L. A good linear correlation between the current and the concentration of the target nucleic acid concentration is found in the concentration range from 7.51×10^-12 mol/L to 1.05×10^-9 mol/L. The detection limit is 7.51×10^-13 mol/L. The modified electrode exhibits high sensitivity, precision, stability and reproducibility.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第5期1345-1350,共6页 The Chinese Journal of Nonferrous Metals
基金 教育部长江学者和创新团队发展计划资助项目(IRT0719) 教育部新世纪优秀人才支持计划资助项目(NCET-11-0129) 国家自然科学基金资助项目(50608029 50808072 50978088) 湖南大学中央高校基本科研业务费专项资金资助项目 湖南省优秀博士学位论文科研项目
关键词 修饰金电极 自组装单分子膜 基因 竞争杂交 电化学检测 modified gold electrode self-assembled monolayer gene competitive hybridization electrochemicaldetermination
  • 相关文献

参考文献18

  • 1MUTHURASU A, GANESH V. Electrochemical characterization of Self-assembled Monolayers (SAMs) of silanes on indium tin oxide (ITO) electrodes-Tuning electron transfer behaviour across electrode-electrolyte interface[J]. Journal of Colloid and Interface Science, 2012, 374(1): 241-249.
  • 2QU D, UOSAKI K. Formation of continuous platinum layer on top of an organic monolayer by electrochemical deposition followed by electroless deposition[J]. Journal of Electroanalytical Chemistry, 2011,662: 80-86.
  • 3SONG Y, WAN L, WANG Y, ZHAO S, HOU H, WANG L. Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode[J]. Bioelectrochemistry, 2012, 85: 29-35.
  • 4RAJ M A, REVIN S B, JOHN S A. Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic acid using 4-(dimethylamino)pyridine capped gold nanoparticles immobilized on gold electrode[J]. Colloids and Surfaces B: Biointerfaces, 2011, 87(2): 353-360.
  • 5SINGH D, ZENG J, LASKAR D D, DEOBALD L, HISCOX W C, CHEN S. Investigation of wheat straw biodegradation by Phanerochaete chrysosporium[J]. Biomass and Bioenergy, 2011, 35(3): 1030-1040.
  • 6ADAV S S, RAVINDRAN A, SZE S K. Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass[J]. Journal of Proteomics, 2012, 75(5): 1493-1504.
  • 7LIU A, CHEN X, WANG K, WEI N, SUN Z, LIN X, CHEN Y, DU M. Electrochemical DNA biosensor based on aldehyde-agarose hydrogel modified glassy carbon electrode for detection of PML/RARa fusion gene[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1458-1463.
  • 8TAVANA T, KHALILZADEH M A, KARIMI-MALEH H, ENSAFI A A, BEITOLLAHI H, ZAREYEE D. Sensitive voltammetric determination of epinephrine in the presence of aeetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode[J]. Journal of Molecular Liquids, 2012, 168: 69-74.
  • 9STUARDO M, V SQUEZ M, VICUNA R, GONZ LEZ B. Molecular approach for analysis of model fungal genes encoding ligninolytic peroxidases in wood-decaying soil systems[J]. Lett Appl Microbiol, 2004, 38(1): 43-49.
  • 10卢毅屏,蒋小辉,冯其明,欧乐明,张国范.常温酸性条件下黄铜矿的电化学行为[J].中国有色金属学报,2007,17(3):465-470. 被引量:7

二级参考文献17

  • 1李宏煦,王淀佐.硫化矿细菌浸出的半导体能带理论分析[J].有色金属,2004,56(3):35-37. 被引量:10
  • 2Warren G W,Wadsworth M E,EI-Raghy S M.Anodic behavior of chalcopyrite in sulfuric acid[J].Metallurgical Soc of AIME,1982,13(4):261-275.
  • 3Vaughan D J.Atmospheric and electrochemical oxidation of the surface of chalcopyrite[J].Geochimica et Cosmochimica Acta,1995,59(1):1091-1100.
  • 4Yin Q,Vaughan D J,Kelsall G H,England K E R.Electrochemical oxidation of covellite(CuS) in alkaline solution[J].Journal of Colloid and Interface Science,1994,59(6):133-142.
  • 5Klauber C,Parker A,Bronswijk W,Watling H R.Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy[J].Mineral Process,2001,62(1):65-94.
  • 6Hack R P,Dreisinger D B,Peters E,King J A.Passivation of chalcopyrite during oxidative leaching in sulfate media[J].Hydrometallurgy,1995,39(3):25-49.
  • 7Dutrizac J E.Elemental sulphur formation during the ferric chloride leaching of chalcopyrite[J].Hydrometallurgy,1990,23(2):153-176.
  • 8Stott M B,Watling H R,franzmann P D,Sutton D.The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching[J].Mineral Engineering,2000,13(1):1117-1127.
  • 9Woods R,Hope G A.Spectroelectrochemical investigation of the intersection of o-isopropyl-nethylthionocarbomate with copper surfaces[J].Colloids Surf,1999,146(1):63-74.
  • 10Buckley A N,Woods R.Under potential deposition of dithiophosphate on chalcocite[J].Electroanal Chem,1993,357(1):387-405.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部