期刊文献+

基于云平台的逻辑回归模型构建算法的设计与实现 被引量:6

The Design and Implementation of Cloud Platform Based Building Algorithm for Logistic Regression Model
下载PDF
导出
摘要 逻辑回归模型作为分类算法已经被广泛应用到许多领域。近年来随着信息领域的高速发展,海量规模数据成为发展的主要趋势。传统构建逻辑回归模型的算法在大规模数据下不能有效地构建逻辑回归模型。针对海量数据,本文提出了高效的分布式逻辑回归模型构建算法。该算法是基于云计算平台,能够快速、高效地完成逻辑回归分类模型的构建。实验表明,本文提出的算法具有很好的加速比以及可扩展性。 Logistic regression model is applied into many areas as a classification algorithm.Recently,with the highly development of information field,high scale data is becoming the main development trend.Traditional building algorithms for logistic regression models could not build logistic regression models for huge scale data effectively.In this paper,focusing on huge scale data,we propose a high efficient distributed building algorithm for logistic regression models,and it is based on cloud computing platform,and it could build logistic regression classification models fast and efficiently.The experimental results show that the proposed algorithm in this paper has good speed-up and scalability.
作者 俞庆生
出处 《科技通报》 北大核心 2013年第6期137-139,共3页 Bulletin of Science and Technology
基金 广东省高新技术产业化攻关项目(00595750177068012)
关键词 逻辑回归 云计算 分类 可扩展性 logistic regression cloud computing classification scalability
  • 相关文献

参考文献7

  • 1农秀丽,彭展声.非齐次等式约束线性回归模型回归系数的综合条件岭估计[J].科技通报,2012,28(2):4-6. 被引量:1
  • 2P Komarek and A Moore. Making logistic regression a core data mining tool with tr-irls [C]//.Proeeedings of the 5th International Conference on Data Mining Machine Learning, 2005 : 4.
  • 3Lin C, Weng R, Keerthi S.Trust region newton methods for large-scale logistic regression[C]//.Proceedings of the 24th international conference on Machine learning, ACM,2007: 561 - 568.
  • 4苏汉宸,李红燕,苗高杉,等.VTLR:云计算平台上处理大规模移动数据的置信域逻辑回归算法[J].计算机研究与发展,2010:414--419.
  • 5Lin, C., Weng, R., Keerthi, S.: Trust region newton meth- ods for large-scale logistic regression [C]//.Proceedings of the 24th international conference on Machine learning, ACM,2007:561 - 568.
  • 6Jun Liu, Jianhui Chen, Jieping Ye.Large-scale sparse lo- gistic regression [C]//. Proc of ACM SIGKDD 2009.New York:ACM,2009:547-556.
  • 7Tom White. Hadoop The Definitive Guide [M]. O'Reilly Media, Inc. 2005.

二级参考文献10

同被引文献45

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部