期刊文献+

基于结构完整性评定方法和有限元分析并考虑焊接残余应力的焊接缺陷评估(英文) 被引量:2

Defect assessment of welded specimen considering weld induced residual stresses using SINTAP procedure and FEA
下载PDF
导出
摘要 采用欧共体提出的结构完整性评定方法(SINTAP)与有限元分析(FEA)方法,结合焊接残余应力对存在横向贯穿裂纹的ASTMA36钢板和7075-T7351铝合金板对接焊接头的缺陷进行评估。由SINTAP方法、FEA或者实验得到焊接产生的纵向残余应力曲线。该残余应力曲线与SINTAP方法中得到的梯形残余应力拟合较好。计算了3种不同情况下的裂纹长度和残余应力强度因子(SIF),并与通过有限元分析得到的结果相比较,绘制了残余应力强度因子与裂纹长度的关系曲线。利用该图可以计算包括残余应力和力学载荷的总的SIF,比较了总的SIF与损伤容限分析法得到的材料断裂韧性。绘制了焊接态的、力学载荷的和存在残余应力情况下的不同裂纹尺寸的7075-T7351铝合金板的失效评估图,以确定在某特殊裂纹尺寸和力学载荷下的安全水平。 The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1452-1458,共7页 中国有色金属学报(英文版)
关键词 失效评估图 断裂韧性 应力强度因子 贯穿裂纹 焊接残余应力 failure assessment diagram fracture toughness stress intensity factor through thickness crack welding residual stress
  • 相关文献

参考文献10

  • 1PARKER A P. Stress intensity factors, crack profiles and fatigue crack growth rates in residual stress fields. Residual stress effects in fatigue [M]. West Conshohocken, PA, USA: ASTM Intemational 1982: 13-31.
  • 2ITOH Y Z, SURUGA S, KASHIWAYA H. Prediction of fatigue crack growth rate in welding residual stress field [J]. Engineering Fracture Mechanics, 1989, 33: 397-407.
  • 3BEGHINI M, BERTINI L. Fatigue crack propagation through residual stress fields with closure phenomena [J]. Engineering Fracture Mechanics, 1990, 36:379- 387.
  • 4STACEY A, BARTHELEMY J Y, LEGGATT R H, AINSWORTH R A. Incorporation of residual stresses into the SINTAP defect assessment procedure [J]. Engineering Fracture Mechanics, 2000, 67: 573 -611.
  • 5STACEY A. SINTAP offshore research focus [M]. London: Emap Construct; 1996:115.
  • 6JEYAKUMAR M, CHRISTOPHER T, NARAYANAN R, NAGESWARA RAO B. Residual stress evaluation in butt-welded steel plates [J]. Indian Journal Engineering and Material Sciences, 2011, 18: 425-434.
  • 7BAO Rui, ZHANG Xiang, YAHAYA N A. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods [J]. Engineering Fracture Mechanics, 2010, 77: 2550-2566.
  • 8ANDERSON T L. Fracture mechanics, fundamentals and applications [M]. 3rd ed. Norway: CRC press, Tailor and Francis Group, 2005.
  • 9LEGGATE R H, SANDERSON R M. Stress intensity due to residual stresses [M]. United Kingdom: HSC Publications, 1999.
  • 10JEYAKUMAR M, CHRISTOPHER T. Fracture strength evaluation of center-crack tensile specimens made of heat-treated wrought aluminium alloys [J]. Material Sciences Research Journal, 2008, 2(1-2): 53-69.

同被引文献22

  • 1张敏,周小华,李继红,王莹.中厚板CO_2多层多道焊对接接头焊接残余应力及其分布[J].西安理工大学学报,2007,23(4):394-397. 被引量:6
  • 2VASILIEV V V, RAZIN A F. Anisogrid composite lattice structures for spacecraft and aircraft applications[J]. Composite Structures, 2006, 76(1): 182-189.
  • 3BAGGER C, OLSEN F O. Review of laser hybrid welding[J]. Journal of Laser Applications, 2005, 17(1): 2-14.
  • 4LI C~ GAO M, CHEN C, ZENG X Y. Characterization comparison of laser and laser-arc hybrid welding of Invar 36 alloy[J]. Science and Technology of Welding and Joining, 2014, 19(1): 30-37.
  • 5XU Pei-quan, BAO Chen-ming, LU Feng-gui. Numerical simulation of laser-tungsten inert arc deep penetration welding between WC-Co cemented carbide and invar alloys[J]. International Journal of Advanced Manufacturing Technology, 2011, 53(9/12): 1049-1062.
  • 6XU Pei-quan. Dissimilar welding of WC-Co cemented carbide to Ni42Fe50.9C0.6Mn3.5Nb3 invar alloy by laser-tungsten inert gas hybrid welding[J]. Materials & Design, 2011, 32(1): 229-237.
  • 7R.UTTER J W, CHALMERS B. A prismatic substructure formed during solidification of metals[J]. Can J Phys, 1953, 31(1): 15-39.
  • 8TILLER- W A, JACKSON K A, RUTTER J W, CHALMERS B. The redistribution of solute atoms during the solidification of metals[J]. Acta Met, 1953, 1(4): 428-437.
  • 9高明,谭兵,冯杰才,曾晓雁,严军.工艺参数对AZ31镁合金激光-MIG复合焊缝成形的影响[J].中国有色金属学报,2009,19(2):222-227. 被引量:11
  • 10益小苏,张明,安学锋,刘立朋.先进航空树脂基复合材料研究与应用进展[J].工程塑料应用,2009,37(10):72-76. 被引量:57

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部