期刊文献+

含Riemann-Liouville导数分数阶微分方程比较定理的推广 被引量:1

The Generalization of Comparison Theorems of Fractional Differential Equations with Riemann-Liouville’s Derivative
下载PDF
导出
摘要 利用分数阶微分方程与相应的Volterra积分方程的等价性,将含Riemann-Liouville导数的分数阶微分方程比较定理中的阶数α的取值范围由(0,1)推广到(n-1,n),n∈Z+,得到任意分数阶的微分方程比较定理,从而扩大了含Riemann-Liouville导数的分数阶微分方程比较定理的使用范围. Abstract: By use of the equivalence between the fractional differential equations and the corresponding Volterra integral equations, the range of the order a of the comparison theorem is extended from a E (0,1) to a (n-1,n),n∈Z+, , so that the comparison theorem for any arbitrary fractional order differential equations is obtained and the application scope of this theorem is enlarged.
出处 《内江师范学院学报》 2013年第6期8-12,共5页 Journal of Neijiang Normal University
基金 四川文理学院科研资助项目(2012Z004Z)
关键词 Riemann-Liouville导数 分数阶微分方程 比较定理 Riemann-Liouville’s derivative fractional differential equations comparison theorem generalization
  • 相关文献

参考文献11

  • 1Oldham K B, SpaNner J. The Fractional Calculus [M]. New York: Academic Press, 1974:46-60.
  • 2Podlubny I. Fractional. Differential Equations [M]. New York: Academic Press, 1999:41-136.
  • 3Kilbas A A, H. M. Srivastava, J. J. Trujillo. Theory and Application of Fractional Differential Equations [M]. New York: Elsevier, 2006:69-278.
  • 4Sabatier Jocelyn, Mozd Mathieu, FARGES Christophe. LMI stability conditions for fractional order systems [J ]. Computers and Mathematics with Applications, 2010, 59(5) : 1594-1609.
  • 5古传运,田永强,包姣.一类分数阶非线性系统正解的存在性[J].科学技术与工程,2011,11(17):3873-3876. 被引量:4
  • 6许佳,钟守铭.Gronwall不等式的推广及其在分数阶微分方程中的应用[J].西华大学学报(自然科学版),2012,31(5):62-64. 被引量:9
  • 7胡桐春,钱德亮,李常品.分数阶微分方程的比较定理[J].应用数学与计算数学学报,2009,23(1):97-103. 被引量:17
  • 8梁淼.一阶常微分方程比较定理的高阶推广[J].苏州市职业大学学报,2007,18(4):87-89. 被引量:2
  • 9Fan Shengjun, Long Jiang. A Generalized Comparison Theorem for BSDEs and Its Applications [J]. Journal of Theoretical Probability, 2012, 25 (1) : 50-61.
  • 10Feng Yuqiang, Qu Guangjun. A new comparison theorem and the solvability of a third-order two-point boundary value problem [J]. Bull Malays Math Sci Soc 2011, 34(3): 435-444.

二级参考文献25

  • 1郑丽芳,吴珍莺.Gronwall不等式的几个推广及其在微分方程中的应用[J].莆田学院学报,2007,14(2):24-28. 被引量:6
  • 2K.B.Oldham and J.Spanier.The Fractional Calculus[M].New York,Academic Press,1974.
  • 3I.Podlubny.Fractional Differential Equations[M].New York,Academic Press,1999.
  • 4R.C.Koeller.Polynomial operators,Stieltjes convolution,and fractional calculus in hereditary mechanics[J].Acta Mechanica,1986,58:251-264.
  • 5R.C.Koeller.Application of fractional caculus to the theory of viscoelasticity[J].J.Appl.Mech.,1984,51:229-307.
  • 6M.Lchise,Y.Nagayanagi and T.Kojima.An analog simulation of noninteger order transfer functions for analysis of eletrode processes[J].Electroanal.Chem.,1971,33:253-265.
  • 7O.Heaviside.Electromagnetic Theory[M].New York,Chelsea,1971.
  • 8N.Sugimoto.Burgers equation with a fractional derivative:hereditary effects on nonlinear acoustic waves[J].Fluid Mech.,1991,225:631-653.
  • 9A.A.Kilbas,H.M.Srivastava and J.J.Trujillo.Theory and Application of Fractional Differ-ential Equations[M].New York,Elsevier,2006.
  • 10C.P.Li and W.H.Deng.Remarks on fractional derivative[J].Appl.Math.Comput.,2007,187:774-784.

共引文献28

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部