摘要
利用分数阶微分方程与相应的Volterra积分方程的等价性,将含Riemann-Liouville导数的分数阶微分方程比较定理中的阶数α的取值范围由(0,1)推广到(n-1,n),n∈Z+,得到任意分数阶的微分方程比较定理,从而扩大了含Riemann-Liouville导数的分数阶微分方程比较定理的使用范围.
Abstract: By use of the equivalence between the fractional differential equations and the corresponding Volterra integral equations, the range of the order a of the comparison theorem is extended from a E (0,1) to a (n-1,n),n∈Z+, , so that the comparison theorem for any arbitrary fractional order differential equations is obtained and the application scope of this theorem is enlarged.
出处
《内江师范学院学报》
2013年第6期8-12,共5页
Journal of Neijiang Normal University
基金
四川文理学院科研资助项目(2012Z004Z)