摘要
针对无人驾驶车辆SLAM算法中全局定位感知系统存在的问题,提出一种融合多信息认知模型的广义SLAM算法来设计控制器结构,并且利用道路结构化环境下智能传感器节点作为环境地图的一部分,快速构建道路环境地图,采用基于局部视觉的辅助定位导航方法进行车辆辅助定位,从而提高控制器全局定位的感知能力和系统定位响应速度。仿真计算表明,控制器可以得到车辆位置似然度的最佳值。
Aiming at the problems existing in the whole Localization apperceive system of Simultaneous Localization and Mapping(SLAM)algorithm for unmanned vehicle, this paper puts forward a generalized SLAM algorithm based on a fusion multi-information integrated cognitive model to design the controller structure, utilizes the intelligent sensor node under the road strueturalized environment as a part of environmental map, builds the road environmental map fastly, and adopts an auxiliary location and navigation method based on partial visual sense to assisting localization, thereby improves the control- ler's ability of whole localization apperceive and the system's localization response speeds. Simulation calculation indicates that the controller could gain the best value of unmanned vehicle position likelihood.
出处
《计算技术与自动化》
2013年第2期52-55,共4页
Computing Technology and Automation
基金
广东省省部产学研结合项目(2012B091100500)
关键词
多信息融合
无人驾驶车辆
SLAM
multi-information integrated cognitive
unmanned vehicle
SLAM