期刊文献+

NaYF_4∶Yb^(3+),Er^(3+)@NaGdF_4@TaO_x多模态纳米探针的合成及其在生物成像中的应用 被引量:9

Synthesis of NaYF_4∶Yb^(3+),Er^(3+)@NaGdF_4@TaO_x Multimodal Nanoprobe for Bioimaging Applications
下载PDF
导出
摘要 采用溶剂热法在稀土掺杂NaYF4∶Yb3+,Er3+上转换纳米粒子上包覆一层NaGdF4,再利用反相微乳液法在NaGdF4上覆盖一层TaOx,从而合成NaYF4∶Yb3+,Er3+@NaGdF4@TaOx核壳壳结构的纳米探针。使用透射电镜(TEM)、X射线衍射(XRD)及X射线能量色散谱分析(EDS)对NaYF4∶Yb3+,Er3+@NaGdF4@TaOx纳米探针的结构和组成进行表征。并通过荧光光谱、磁滞回线以及电子计算机X射线横断扫描(CT)造影成像等方法对其性能进行了表征,证明该纳米探针具有良好的光学、磁学和CT造影特性。将NaYF4∶Yb3+,Er3+@NaG-dF4@TaOx纳米探针应用于小鼠活体成像实验,结果表明,这种纳米探针对小鼠肿瘤部位的磁共振成像(MRI)和CT信号均有较好的增强效果,表明其在多模态造影成像方面有潜在的应用前景。 Using solvothermal method,NaYF4 ∶ Yb3+,Er3+@NaGdF4 was synthesized by deposition of a layer of NaGdF4 on the NaYF4 ∶ Yb3+,Er3+ upconverting nanoparticles(UCNPs) Then,NaYF4 ∶ Yb3+,Er3+@NaGdF4@TaOx core@shell@shell nanoparticles were prepared through decorating the radiopaque but fluorescence-transparent TaOx onto the surface of NaYF4 ∶ Yb3+,Er3+@NaGdF4 by a facile reverse microemulsion strategy.The structure of the NaYF4 ∶ Yb3+,Er3+@NaGdF4@TaOx nanoparticle was characterized by transmission electron microscopy(TEM),powder X-ray diffraction(XRD),energy-dispersive X-ray analysis(EDS).The X-ray attenuation,magnetic and upconversion luminescent studies suggested that the as-prepared NaYF4 ∶ Yb3+,Er3+@NaGdF4 @TaOx nanoparticle could be employed as multimodal nanoprobe for bioimaging applications.Furthermore,the feasibility of NaYF4 ∶ Yb3+,Er3+@NaGdF4 @TaOx for electronic computer X-ray transaction scan/magnetic resonance imaging(CT/MRI) in vivo was demonstrated.The brightness enhancement of MRI and CT signals in the tumor region were clearly observed at prolonged post-injection to 0.5 h,indicating that the NaYF4 ∶ Yb3+,Er3+@NaGdF4 @TaOx hold great potential for multimodal imaging in vivo.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第6期811-816,共6页 Chinese Journal of Analytical Chemistry
基金 科技部纳米重大研究计划(No.2011CB935800)资助
关键词 稀土掺杂上转换纳米粒子 核壳壳结构 多模态探针 活体成像 Rare earth doped upconversion nanoparticles Core shell structure Multimodal probe In vivo bioimaging
  • 相关文献

参考文献14

  • 1Kobayashi H, Ogawa M, Afford R, Choyke P L, Urano Y. Chem. Rev. , 2010, 110(5) : 2620-2640.
  • 2Gunasekera U A, Pankhurst Q A, Douek M. Targ. Oncol. , 2009, 4 (3) : 169-181.
  • 3Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T. Biomaterials. , 2010, 31(24) : 6249-6268.
  • 4Cheon J, Lee J H. Acc. Chem. Res. , 2008, 41(12) : 1630-1640.
  • 5Michaelis J, Hettich C, Mlynek J, Sandoghdar V. Nature, 2000, 405(6784) : 325-328.
  • 6Zhou J, Sun Y, Du X X, Xiong L Q, Hu H, Li F Y. Biomaterials. , 2010, 31(12) : 3287-3295.
  • 7XingH Y, Bu W B, Zhang S J, Zheng X P, Li M, Chen F, He Q J, Zhou L P, Peng W J, Hua Y Q, Shi J L Biomaterials. , 2012, 33(4) : 1079-1089.
  • 8Ryu J, Park H Y, Kim K, Kim H, Yoo J H, Kang M, Im K, Grailhe R, Song R. J. Phys. Chem. C. , 2010, 114(49) 21077-21082.
  • 9Mader H S, Kele P, Saleh S M, Wolibeis O S. Current Opinion in Chemical Biology. , 2010, 14(5) : 582-596.
  • 10Na H B, Song I C, Hyeon T. Adv. Mater. , 2009, 21(21) : 2133-2148.

同被引文献115

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部