期刊文献+

量子仿射代数Uq(sln)的范畴化

The Categorification of Quantum Affine Algebra U_q(sl_n)
下载PDF
导出
摘要 用弦图构造了与Lusztig的量子群U=U_q(sl_n)对应的2-范畴u和u.其中u是u的Karoubi包络.通过构造u的2-表示,可以证明u的Grothendieck环K_0(u)同构于代数_AU,其中U是U的幂等变形,而_AU是U的整形式.由此得到的范畴u就是量子仿射代数U_q(sl_n)的范畴化. We construct 2-categories uand U using string diagrams corresponding to Lusztig's quantum group U = Uq(sln). Here U is the Karoubi envelope of u. By constructing the 2- representation of Lt, we also prove that the Grothendieck ring K0(U) ofU is isomorphic to the algebra U, where U is the idempotented modification of U and U is the integral form of l). We obtain that the category U could be considered as the categorification of quantum affine algebra Uq(sln).
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第3期431-465,共35页 Acta Mathematica Scientia
基金 国家自然科学基金(10975102,11031005,10871135,10871227) 北京市创新团队项目(201007107)资助
关键词 量子仿射代数 范畴化 2-表示 Quantum affine algebra Categorification 2-representation.
  • 相关文献

参考文献20

  • 1Lusztig G. Introduction to Quantum Groups. Progress in Mathematics, 110. Boston: Birkhuser, 1993.
  • 2Drinfeld V. Quantum Groups. In Proceedings of the International Congress of Mathematicians. Providence, RI: Amer Math Soc, 1987.
  • 3Jimbo M. A q-difference analogue of U(9) and the Yang-Baxter equation. Lett Math Phys, 1985, 10(1): 63 69.
  • 4Bernstein J, Frenkel I, Khovanov M. A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors. Selecta Math (NS), 1999, 5(2): 199-241.
  • 5Stroppel C. Categorification of the Temperley-Lieb cagegory, tangles, and cobordisms via projective functors. Duke Math J, 2005, 126(3): 547-596.
  • 6Frenkel I B, Khovanov M, Stroppel C. A categorification of finite-dimensional irreducible representations of quantum s/(2) and their tensor products. Selecta Math (NS), 2006, 12(3-4): 379-431.
  • 7BeYlinson A A, Lusztig G, MacPherson R. A geometric setting for the quantum deformation of GLn. Duke Math J, 1990, 61(2): 655-677.
  • 8Grojnowski I, Lusztig G. On Bases of Irreducible Representations of Quantum GLn. Contemp Math, Vol 139. Providence, RI: Amer Math Soc, 1992:167-174.
  • 9Zheng H. Categorification of integrable representations of quantum groups. 2008, arXiv:0803.3668.
  • 10Lauda A. A categorication of quantum sly. Adv Math, 2010, arXiv: math QA/0803.3652.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部