摘要
用弦图构造了与Lusztig的量子群U=U_q(sl_n)对应的2-范畴u和u.其中u是u的Karoubi包络.通过构造u的2-表示,可以证明u的Grothendieck环K_0(u)同构于代数_AU,其中U是U的幂等变形,而_AU是U的整形式.由此得到的范畴u就是量子仿射代数U_q(sl_n)的范畴化.
We construct 2-categories uand U using string diagrams corresponding to Lusztig's quantum group U = Uq(sln). Here U is the Karoubi envelope of u. By constructing the 2- representation of Lt, we also prove that the Grothendieck ring K0(U) ofU is isomorphic to the algebra U, where U is the idempotented modification of U and U is the integral form of l). We obtain that the category U could be considered as the categorification of quantum affine algebra Uq(sln).
出处
《数学物理学报(A辑)》
CSCD
北大核心
2013年第3期431-465,共35页
Acta Mathematica Scientia
基金
国家自然科学基金(10975102,11031005,10871135,10871227)
北京市创新团队项目(201007107)资助
关键词
量子仿射代数
范畴化
2-表示
Quantum affine algebra
Categorification
2-representation.