期刊文献+

弱基与度量空间的紧覆盖映像

Weak Bases and the Compact-Covering Images of Metric Spaces
下载PDF
导出
摘要 借助sn网,获得了拓扑空间X的每一紧子集可度量化且在X中具有可数弱基的等价特征,证明了这空间可刻画为度量空间的1-scc(或scc)的商映像,讨论了每一紧子集具有可数外弱基空间的性质,推广了Michael和Nagami关于度量空间的紧覆盖、开映像的经典结果. In this paper some equivalent conditions of a space in which each compact subset is metrizable and has a countable weak base in the space are obtained by means of sn-networks, the spaces are characterized as images of metric spaces under l-scc (resp. scc) and quotient maps, and spaces in which each compact subset has a countable outer weak base are discussed, which generalized the classic result about compact-covering and open images of metric spaces by Michael and Nagami.
作者 林寿 张静
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第3期483-493,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10971185,11171162) 福建省自然科学基金(2009J01013)资助
关键词 sn网 弱基 外sn网 外弱基 紧覆盖映射 1序列覆盖映射 商映射 1-SCC映 SCC映射 sn-networks Weak bases Outer sn-networks Outer weak bases Compact-covering maps 1-sequence-covering maps Quotient maps 1-scc-maps scc-maps.
  • 相关文献

参考文献15

  • 1Arhangel'skii A V. Mappings and spaces. Russian Math Survey, 1966, 21:115 162.
  • 2Chen Huaipeng. Compact-coverings maps and k-networks. Proc Amer Math Soc, 2003, 131:2623-2632.
  • 3Franklin S P. Spaces in which sequences suffice. Fund Math, 1965, 57:107-115.
  • 4Gruenhage G, Michael E A, Tanaka Y. Spaces determined by point-countable covers. Pacific J Math, 1984, 113:303 332.
  • 5Hart K P, Nagata J, Vaughan J E. Encyclopedia of General Topology. Amsterdam: Elsevier Science Publishers B V. 2004.
  • 6李克典.双层空间的刻画[J].数学物理学报(A辑),2010,30(3):649-655. 被引量:1
  • 7林寿.关于序列覆盖s映射[J].数学进展,1996,25(6):548-551. 被引量:72
  • 8Liu Chuan. On weak bases. Topology Appl, 2005, 150:91-99.
  • 9Michael E A. R0-spaces. J Math Mech, 1966, 15:983 1002.
  • 10Michael E A, Nagami K. Compact-covering images of metric spaces. Proc Amer Math Soc, 1973, 37 260-266.

二级参考文献26

  • 1Creede G D. Concerning semi-stratifiable spaces. Pacific Journal of Math, 1970, 32(1): 47-54.
  • 2Martin H. Metrizability of M-spaces. Can J Math, 1973, 4:840-841.
  • 3Martin H. Metrizability and submetrization of topological spaces[D]. Pittsburgh, PA: University of Pittsburgh, 1973.
  • 4Mohamad A. A note on developability and metrizability. New Zealand J Math, 2003, 32:67-71.
  • 5Bennett H, Byerly R, Lutzer D. Compact Gδ sets. Topology Appl, 2006, 153:2169-2181.
  • 6Hodel R E. Moore spaces and ωΔ-spaces. Pacific J Math, 1971, 38:641-652.
  • 7Good C, Knight R, Stares I. Monotone countable paracompactness. Topology Appl, 2000, 101(3): 281-298.
  • 8Gruenhage G. Generalized Metric Spaces. In Handbook of Set-theoretic Topology. Amsterdam: North-Holland, 1984.
  • 9Borges C R.On stratifiable spaces.Pacific J Math,1966,17:1-16.
  • 10Engelking R.General Topology(Revised and completed edition).Berlin:Heldermann Verlag,1989.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部