期刊文献+

微波解吸-催化燃烧净化甲苯研究 被引量:8

Combination Process of Microwave Desorption-Catalytic Combustion for Toluene Treatment
原文传递
导出
摘要 以甲苯为目标污染物,采用活性炭做吸附剂对含甲苯废气进行吸附;吸附完成后利用微波辐照进行解吸;另外采用浸渍法制备Cu-Mn复合氧化物催化剂并对微波解吸后的废气进行催化燃烧处理从而达到对污染物进行彻底净化的目的.实验中甲苯的浓度由气相色谱(GC)测定.结果表明,采用微波解吸后,在以氮气为载气的解吸气体中加入空气来提供氧气从而实现催化燃烧是可行的,解吸气与空气配比为1∶1(体积比)时效果最好,此时对应的催化空速为2.67 s-1.解吸温度会影响解吸气体中的甲苯浓度进而影响催化燃烧效率,实验结果表明400℃解吸比较理想.当催化燃烧温度保持在300℃时,系统对甲苯的最终净化效率可以维持在90%以上,其中大部分时间是在95%以上. Using activated carbon as adsorbent, toluene waste gas was treated by adsorption process. After the adsorption process was completed, the adsorbent was desorbed by microwave irradiation; then Cu-Mn oxide composite catalysts were prepared by impregnation and the desorbed toluene gas was treated by catalytic combustion so as to completely purify the pollutant. The concentration of toluene was measured by gas chromatography (GC). The results indicated that it is feasible to add air to provide oxygen to the desorbed gas after the completion of the desorption process, in order to achieve the catalytic combustion; the ratio of desorbed gas and air was 1 : 1 (volume ratio) , and the corresponding catalytic space velocity was 2. 67 s-l. Desorption temperature could affect the concentration of toluene in the desorption gas thereby affecting the catalytic combustion efficiency; the results indicated that 400℃ was an appropriate temperature for desorbing the activated carbon. When the catalytic combustion was kept at 300℃ , the final toluene treatment efficiency was higher than 90% , which was higher than 95% during the most time of the treatment process.
出处 《环境科学》 EI CAS CSCD 北大核心 2013年第7期2546-2551,共6页 Environmental Science
基金 陕西省自然科学基金项目(2006E210) 陕西省教育厅专项科研计划项目(06JK269) 山东省博士后创新项目专项资金项目(201202028)
关键词 微波 解吸 催化燃烧 活性炭 挥发性有机化合物(VOCs) 甲苯 microwave desorption catalytic combustion activated carbon volatile organic compounds (VOCs) toluene
  • 相关文献

参考文献26

  • 1Mudliar S, Girl B, Padoley K, et al. Bioreactors for treatment of VOCs and odours-A review [ J ]. Journal of Environmental Management, 2010, 91 (5) : 1039-1054.
  • 2Yu F D, Lin G L, Grevillot G. Electrothermal swing adsorption of toluene on an activated carbon monolith: Experiments and parametric theoretical study [ J ]. Chemical Engineering and Processing, 2007, 46( 1 ) : 70-81.
  • 3Pierre Le Cloirec.活性炭纤维布吸附与电热脱附挥发性有机化合物研究进展(英文)[J].Chinese Journal of Chemical Engineering,2012,20(3):461-468. 被引量:15
  • 4Weiwei Zhang,Zhenping Qu,Xinyong Li,Yi Wang,Ding Ma,Jingjing Wu.Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials[J].Journal of Environmental Sciences,2012,24(3):520-528. 被引量:13
  • 5Conti-Ramsden M G, Brown N W, Roberts E P L. The combination of adsorbent slurry sorption with adsorbent electrochemical regeneration for VOC removal [ J ]. Chemical Engineering Journal, 2012, 198-199( 1 ) : 130-137.
  • 6Carratald-Abril J, Lillo-RSdenas M A, Linarcs-Solano A, et al. Regeneration of activated carbons saturated with benzene or toluene using an oxygen-containing atmosphere [ J ]. Chemical Engineering Science, 2010, 65(6) : 2190-2198.
  • 7Hwang K S, Choi D K, Gong S Y, et al. Adsorption and thermal regeneration of methylene chloride vapor on an activated carbon bed [ J ]. Chemical Engineering Science, 1997, 52 ( 7 ) : 1111- 1123.
  • 8Lee D G, Kim J H, Lee C H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y- zeolite bed [ J ]. Separation and Purification Technology, 2011,77(3): 312-324.
  • 9Riviera C J, Ferro Garcia M A, Bautista T I, et al. Regeneration of ortho- chlorophenol-exhausted activated carbons with liquid water at high pressure and temperature [ J]. Water Research, 2003, 37(8) : 1905-1911.
  • 10Tan C S, Lee P L. Supercritieal CO2 desorption of toluene from activated carbon in rotating packed bed [ J]. The Journal of Supercritical Fluids, 2008, 46(2) : 99-104.

二级参考文献87

共引文献112

同被引文献79

  • 1杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].炭素,2006(1):17-22. 被引量:44
  • 2孟冠华,李爱民,张全兴.活性炭的表面含氧官能团及其对吸附影响的研究进展[J].离子交换与吸附,2007,23(1):88-94. 被引量:122
  • 3Romero-Anaya A J, Lillo-R6denas M A, Linares-Solano A.Activation of a spherical carbon for toluene adsorption at lowconcentration[ J]. Carbon, 2014,77: 616-626.
  • 4Wang H, Jahandar Lashaki M , Fayaz M,et al. Adsorption anddesorption of mixtures of organic vapors on beaded activatedcarbon[ J ]. Environmental Science and Technology, 2012 , 46(15): 8341-8350.
  • 5Bhuyan S J, Latin M R. BTEX remediation under challenging siteconditions using in-situ ozone injection and soil vapor extractiontechnologies: a case study[ J]. Soil and Sediment Contamination:An International Journal, 2012,21(4) : 545-556.
  • 6Vivo-Vilches J F,Bail6n-Garcla E, P6rez-Cadenas A Y, et al.Tailoring the surface chemistry and porosity of activated carbons :evidence of reorganization and mobility of oxygenated surfacegroups[ J]. Carbon, 2014,68: 520-530.
  • 7Shim J W, Park S J, Ryu S K. Effect of modification with HN03and NaOH on metal adsorption by pitch-based activated carbonfibers[J]. Carbon, 2001 , 39(11) : 1635-1642.
  • 8Li L, Liu S Q,Liu J X. Surface modification of coconut shellbased activated carbon for the improvement of hydrophobic VOCremoval [ J ] . Journal of Hazardous Materials, 2011,192(2):683-690.
  • 9Wen H C , Yang K, Ou K L, ef al. Effects of ammonia plasmatreatment on the surface characteristics of carbon fibers [ J ].Surface and Coatings Technology, 2006, 200( 10) : 3166-3169.
  • 10Martinez F, Pariente I,Brebou C, et al. Chemical surfacemodified-activated carbon cloth for catalytic wet peroxideoxidation of phenol [ J ]. Journal of Chemical Technology andBiotechnology, 2014,89(8) : 1182-1188.

引证文献8

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部