期刊文献+

生物滴滤池对BTEX的去除及相应细菌群落分析 被引量:4

Removal of BTEX by a Biotrickling Filter and Analysis of Corresponding Bacterial Communities
原文传递
导出
摘要 以预先驯化的菌群和活性污泥作为起始接种物用于生物滴滤池(BTF)中,研究评估了BTF去除苯、甲苯、乙苯和二甲苯混合气体(BTEX)的性能,并利用变性梯度凝胶电泳(DGGE)技术分析了微生物群落结构的变化.结果表明,BTF能在短时间内得到驯化,填料附着的生物量从第10 d的5.7 mg.g-1迅速增加至第30 d的112 mg.g-1.BTF能同时有效去除混合BTEX中的各组分,在进气负荷和停留时间分别为269.7 g.(m3.h)-1和39 s时,可获得的最大去除能力为216.6 g.(m3.h)-1.DGGE图谱表明,BTF中优势微生物种群主要来源于富集菌群,微生物群落结构随着运行时间发生变化,但在BTF上下空间分布较为均匀. The pre-acclimated microbial consortium and the activated sludge were used as start inoculums of a bench-scale biotrickling filter (BTF). The performance of the biotrickling filter on the removal of BTEX mixture was evaluated, and the changes in the bacterial community structure of the BTF were analyzed by PCR-DGGE technique. The results showed that the BTF could be acclimated within a short time, the biomass that adhered to the surface of packing materials increased rapidly from 5.7 mg·g-1 at 10th day to 112 mg·g-1 at 30th day. BTF could simultaneously remove all components of the BTEX mixture efficiently. The maximum removal capacity of the BTF was 216.6 g·(m3·h)-1, which was achieved with an inlet loading rate of 269.7 g·(m3·h)-1 and an empty bed retention time (EBRT) of 39 s. DGGE analysis indicated that the dominant microorganisms may be derived from the pre-acclimated microbial consortiums rather than the activated sludge. Although the bacterial community changed with run time, the spatial distribution was very uniform.
出处 《环境科学》 EI CAS CSCD 北大核心 2013年第7期2552-2559,共8页 Environmental Science
基金 国家自然科学基金项目(31270169) 广东省科技计划项目(2010A030200021 2011A030700002)
关键词 生物滴滤池 BTEX DGGE 群落结构 菌群 biotrickling filter(BTF) BTEX DGGE community structure microbial consortium
  • 相关文献

参考文献27

  • 1Arulneyam D, Swaminathan T. Biodegradation of ethanol vapour in a biofiher [ J ]. Bioprocess Engineering, 2000, 22 ( 1 ) : 63- 67.
  • 2Fo-uny M, Gamisans X, Deshusses M A, et al. Operational aspects of the desulfufization process of energy gases mimics in biotfickling filters[J]. Water Research, 2011, 45 (17): 5665- 5674.
  • 3Hwang J W, Choi C Y, Park S, et al. Biodegradation of gaseous styrene by Brevibacillus sp. using a novel agitating biotrickling filter [ J ]. Biotechnology Letters, 2008, 30 ( 7 ) : 1207-1212.
  • 4Cho E, Galera M M, Lorenzana A, et al. Ethylbenzene, o- Xylene, and BTEX removal by Sphingomonas sp. D3K1 in rock wool-compost biofihers[ J]. Environmental Engineering Science, 2009, 26(1): 45-52.
  • 5Reij M W, Hartmans S. Propene removal from synthetic waste gas using a hollow-fibre membrane bioreactor [ J ]. Applied Microbiology and Biotechnology, 1996, 45(6) : 730-736.
  • 6Pielech-Przybylska K, Zieminski K, Szopa J S. Acetone biodegradation in a trickle-bed biofiher [ J ]. International Biodeterioration & Biodegradation, 2006, 57(4) : 200-206.
  • 7Elsgaard L. Ethylene removal by a biofiher with immobilized bacteria[ J]. Applied and Environmental Microbiology, 1998, 64(11) : 4168-4173.
  • 8Chung Y C, Cheng C Y, Chen T Y, et al. Structure of the bacterial community in a biofilter during dimethyl sulfide (DMS) removal processes [ J ]. Bioresource Technology, 2010, 101 (18) : 7176-7179.
  • 9Kristiansen A, Pedersen K H, Nielsen P H, et al. Bacterial community structure of a full-scale biofilter treating pig house exhaust air[ J]. Systematic and Applied Microbiology, 2011, 34 (5) : 344-352.
  • 10Yasuda T, Kuroda K, Hanajima D, et al. Characteristics of the microbial community associated with ammonia oxidation in a full- scale rockwool biofilter treating malodors from livestock manure composting[ J ]. Microbes and Environments, 2010, 25 (2) : 111-119.

二级参考文献31

  • 1APHA (American Public Health Association/American Water Works Association/Water Environment Federation), 1998. Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington DC, USA.
  • 2Ajithkumar B, Ajithkumar V E Iriye R, 2003. Degradation of 4- amylphenol and 4-hexylphenol by a new activated sludge isolate of Pseudomonas veronii and proposal for a new subspecies status. Research in Microbiology, 154(1): 17-23.
  • 3Auria R, Frere G, Morales M, Acuma M E, Revah S, 2000. Influence of mixing and water addition on the removal rate of toluene vapors in a biofilter. Biotechnology and Bioengineering, 68(4): 448-455.
  • 4Boothman C, Hockin S, Holmes D, Gadd G, Lloyd J, 2006. Molecular analysis of a sulphate-reducing consortium used to treat metal-containing effluents. BioMetals, 19(6): 601- 609.
  • 5Chatterjee S, Dutta T K, 2003. Metabolism of butyl benzyl phthalate by gordonia sp. strain mtcc 4818. Biochemical and Biophysical Research Communications, 309( 1): 36-43.
  • 6Cox H H J, Deshusses M A, 2002. Co-treatment of H2S and toluene in a biotrickling filter. Chemical Engineering Journal, 87(1): 101-110.
  • 7Ding Y, Wu W, Han Z, Chen Y, 2008. Correlation of reactor performance and bacterial community composition during the removal of trimethylamine in three-stage biofilters.Biochemical Engineering Journal, 38(2): 248-258.
  • 8Dorado A D, Baquerizo G, Maestre J P, Gamisans X, Gabriel D, Lafuente J, 2008. Modeling of a bacterial and fungal biofilter applied to toluene abatement: Kinetic parameters estimation and model validation. Chemical Engineering Journal, 140(1-3): 52-61.
  • 9Duan H, Koe L C C, Yan R, Chen X, 2006. Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter. Water Research, 40(14): 2629-2636.
  • 10Fang H H P, Liu H, 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82: 87-93.

共引文献2

同被引文献62

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部