期刊文献+

发酵液作为EBPR碳源的动力学模拟 被引量:2

Kinetic Simulation of Enhanced Biological Phosphorus Removal with Fermentation Broth as Carbon Source
原文传递
导出
摘要 发酵液是一种优质的碳源,能够提高生物除磷系统(EBPR)的除磷效果.采用基于碳源代谢的修正ASM2模型,能够较好地模拟发酵液作为EBPR碳源的动力学变化规律.发酵液作为EBPR唯一碳源时,系统中的异养菌不仅不对聚磷菌(PAO)的生长构成竞争关系,反而促进PAO的生长.发酵液作为实际污水的补充碳源时,优化了污水中的碳源组成,创造了有利于聚磷菌生长的环境,使EBPR中聚磷菌达到微生物总量的40%以上,比实际污水作为碳源的EBPR中的PAO含量提高了3.3倍. As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.
作者 张超 陈银广
出处 《环境科学》 EI CAS CSCD 北大核心 2013年第7期2741-2747,共7页 Environmental Science
基金 国家自然科学基金项目(50408039) 国家高技术研究发展计划(863)项目(2007AA06Z326) 中国石化基础科研项目(311047)
关键词 增强生物除磷 聚磷菌 发酵液 动力学 模拟 enhanced biological phosphorus removal (EBPR) phosphorus accumulating organisms (PAO) fermentation broth kinetics simulation
  • 相关文献

参考文献22

  • 1Thomas M, Wright P, Blackall L, et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs [ J]. Water Science and Technology, 2003, 47 (12) : 141- 148.
  • 2Tong J, Chen Y G. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation [ J ]. Environmental Science and Technology, 2007, 41(20) : 7126-7130.
  • 3Jiang S, Chen Y G, Zhou Q, et al. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant[ J]. Water Research, 2007,41(14) : 3112-3120.
  • 4Ucisik A S, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids [J]. Water Research, 2008, 42( 14): 3729-3738.
  • 5Tong J, Chen Y G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste aetivated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment [ J]. Water Research, 2009, 43 (12) : 2969-2976.
  • 6Zheng X, Tong J, Li H J, et al. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters[ J]. Bioresource Technology, 2009, 100 (9) : 2515-2520.
  • 7Yuan Q, Oleszkiewicz J A. Biomass fermentation to augment biological phosphorus removal [ J]. Chemosphere, 2010, 78 (1) : 29-34.
  • 8Li X, Chen H, Hu L F, et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal[ J]. Environmental Science and Technology, 2011, 45 (5) : 1834-1839.
  • 9Gao Y Q, Peng Y Z, Zhang J Y, et al. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A^2O process [ J]. Bioresource Technology, 2011, 102 ( 5 ) : 4091-4097.
  • 10Chen Y G, Li X, Zheng X, et al. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici [J]. Water Research, 2013, 47(2): 615-622.

二级参考文献53

  • 1张超,陈银广.增强生物除磷系统中微生物及其代谢机制研究进展[J].环境科学与技术,2010,33(10):81-85. 被引量:8
  • 2张亚雷 李咏梅.活性污泥数学模型[M].上海:同济大学出版社,2002..
  • 3Zhang C, Chen Y G, Randall A A, et al. Anaerobic metabolic models for phosphorus-and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources [ J]. WaterResearch, 2008, 42( 14): 3745-3756.
  • 4Von Muench. E1 DSP prefermenter technology boo,[ M ]. Australia, Brcsbane Old: Science Traveller International CRC WMPC Lid, 1998.
  • 5Naik R V. Enhancement of denitrification using prefermenters in biological nutrient removal systems [ D ]. Orlando, FL : University of Central Florida, Orlando, FL, 1999.
  • 6Shah R R. Study of the performance of biological nutrient removal systems with and without prefermenters [ D ]. Orlando, FL: University of Central Florida, 2001.
  • 7Liu Y, Chen Y, Zhou Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids [J]. Chemosphere, 2007, 16( 1 ): 123- 129.
  • 8Henze M, Gujer W, Mino T, et al. Activated sludge model No. 2, IAWQ Scientific and technical report [ R ]. London: IAWQ, 1995.
  • 9Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the activated sludge model No. 2 based on the competition between phosphorus - accumulating organisms and glycogen - accumulating organisms [ J ]. Water Science and Technology, 2001, 43(11): 161-171.
  • 10Yagci N, Insel G, Artan N, et al. Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor[ J]. Water Science and Technology, 2004, 50(6) : 241-250.

共引文献3

同被引文献35

  • 1余杰,田宁宁,王凯军.我国污泥处理、处置技术政策探讨[J].中国给水排水,2005,21(8):84-87. 被引量:83
  • 2王琦,姜霞,金相灿,徐玉慧.太湖不同营养水平湖区沉积物磷形态与生物可利用磷的分布及相互关系[J].湖泊科学,2006,18(2):120-126. 被引量:60
  • 3Muster T. H. , Douglas G. B. , Sherman N. , et al. Towards effective phosphorus recycling from wastewater: Quantity and quality. Chemosphere, 2013, 91 (5) : 676-684.
  • 4Rnban V. , López-Sánchez J. F. , Pardo P. , et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius' Journal of Analytical Chemistry, 2001, 370 (2-3) : 224-228.
  • 5Zhu Mengyuan, Zhu Guangwei, Li Wei, et al. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake ( Taihu, China) using profiled SMT fractional analysis. Environmental Pollution, 2013, 173 : 216-223.
  • 6Xie Chunsheng, Tang Jie, Zhao Jie, et al. Comparison of phosphorus fractions and alkaline phosphatase activity in sludge, soils, and sediments. Journal of Soils and Sediments, 2011, 11(8): 1432-1439.
  • 7Xie Chunsheng, Zhao Jie, Tang Jie, et al. The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource Technology, 2011, 102 (3) : 2455-2461.
  • 8González Medeiros J. J., Pérez Cid B., Fernández Gómez E. Analytical phosphorus fractionation in sewage sludge and sediment samples. Analytical and Bioanalytical Chemistry, 2005, 381 (4): 873-875.
  • 9Lair G. J. , Zehetner F. , Khan Z. H. , et al. Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 2009, 149( 1- 2) : 3944.
  • 10Zehetner F. , Lair G. J. , Maringer F. J. , et al. From sediment to soil: floodplain phosphorus transformations at the Danube River. Biogeochemistry, 2008, 88(2): 117-126.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部