期刊文献+

自适应学习集成优化算法及矩阵特征值求解 被引量:2

Self-Adaptive Learning Based Ensemble Algorithm for Solving Matrix Eigenvalues
下载PDF
导出
摘要 为了增强数值优化算法的高效性和鲁棒性,提出一种基于自适应学习的集成算法(self-adaptive-learning-based ensemble algorithm,SALBEA).在SALBEA中,采用贪婪繁殖算子、进化搜索策略学习算子、X进化算子、种群多样性维持算子改进算法进化结构.此外,SALBEA通过引入概率选择模型和自适应学习机制集成了4种有效的进化搜索策略.首先,为了评估所提算法的性能,采用26个测试函数进行算法对比测试,实验结果表明SALBEA比同类算法具有更好的高效性和鲁棒性.最终,将SALBEA用于求解矩阵特征值这一数值计算问题,结果表明该算法求解精度较高,具有较好的应用前景. In order to enhance the performance of numerical optimization algorithm, a self-adaptive- learnings-based ensemble algorithm (SALBEA) is proposed. In the SALBEA, greedy breeding operator, X-evolution operator, population diversity maintaining operator and evolution strategy learning operator are designed to enhance the evolution structure. Besides, a probability model and a self-adaptive learning mechanism are employed to integrate four effective search strategies. Firstly, in order to evaluate the performance of SALBEA, 26 state-of-the-art test functions are solved by the SALBEA and its competitors, and experimental results indicate that the effectiveness and robustness of the SALBEA outperform its competitors. Then, the SALBEA is employed to solve matrix eigenvalue problem. Experimental results show that the precision of the solutions is very high and SALBEA is a promising algorithm in real-world application.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第7期1435-1443,共9页 Journal of Computer Research and Development
基金 江苏省普通高校研究生科研创新计划基金项目(CXLX11_0203) 航空科学基金项目(2010ZC13012)
关键词 自适应 学习 差分进化 人工免疫系统 微粒群优化 矩阵 特征值 self-adaptation learning differential evolution (DE) artificial immune systems (AIS)particle swarm optimization (PSO) matrix eigenvalues
  • 相关文献

参考文献25

  • 1Kennedy J,Eberhart R. Particle swarm optimization [C] //Proc of IEEE Int Conf on Neural Networks. Piscataway,NJ:IEEE,1995:1942-1948.
  • 2Clerc M,Kennedy J. The particle swarm-explosion,stability,and convergence in a multidimensional complexspace [J],IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 3王斌.一种基于离散微粒群优化的数字曲线的多边形近似算法[J].计算机研究与发展,2010,47(11):1886-1892. 被引量:5
  • 4Yu Gworuey,Huang Jiwei,Chen Yuhsuan. Optimal fuzzycontrol of piezoelectric systems based on Hybird Taguchimethod and particle swarm optimization [C] //Proc of 2009IEEE Int Conf on Systems,Man and Cybernetics.Piscataway,NJ:IEEE,2009:2794-2799.
  • 5公茂果,程刚,焦李成,刘超.基于自适应划分的进化多目标优化非支配个体选择策略[J].计算机研究与发展,2011,48(4):545-557. 被引量:12
  • 6Fukuda T,Mori K,Tsukiyama M. Immune networks usinggenetic algorithm for adaptive production scheduling [C] //Proc of World Congress on Process Control. Oxford;Pergamon Press LTD,1993:353-356.
  • 7De Castro L N,Von Zuben F J. Learning and optimizationusing the clonal selection principle [J],IEEE Trans onEvolutionary Computation,2002,6(3):239-251.
  • 8Cutello V,Narzisi G,Nicosia G,et al. Clonal selectionalgorithms:A comparative case study using effectivemutation potentials [C] //Proc of the 4th Int Conf onArtificial Immune Systems. Berlin .-Springer,2005:13-28.
  • 9Storn R,Price K. Differential evolution-A simple andefficient heuristic for global optimization over continuousspaces [J]. Journal of Global Optimization,1997,11 (4):341-359.
  • 10Qin A K,Huang V L,Suganthan P N. Differential evolutionalgorithm with strategy adaptation for global numericaloptimization [J]. IEEE Trans on Evolutionary Computation,2009,13(2):398-417.

二级参考文献49

  • 1Horng J H. An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs [J]. Pattern Recognition Letters, 2003, 24(1/2/3): 565-577.
  • 2Lourakis M I A, Halkidis S T, Orphanoudakis S C. Matching disparate views of planar surface using projective invariants[J]. Image and Vision Computing, 2000, 18(9): 673-683.
  • 3Hu X, Ahuja N. Matehing point features with ordered geometric, rigidity, and disparity constrains [J].IEEE Transon Pattern Analysis and Machine Intelligenee, 1994.16(10): 1041-1049.
  • 4KuoC M, Hsieh CH, Iiuang Y R. A new adaptive vertexbased binary shape coding technique [J]. Image and Vision Computing, 2007, 25(6): 863-872.
  • 5Kolesnikov A, FrAanti P. Polygonal approximation of closed discrete curves [J].Pattern Recognition, 2007, 40 (4): 1282-1293.
  • 6Perez J C, Vidal E. Optimum polygonal approximation of digital curves [J]. Pattern Recognition Letter, 1994, 15(8) : 743-750.
  • 7Zhang H B, Guo J J. Optimal polygonal approximation of digital planar curves using meta heuristics [J]. Pattern Recognition, 2001. 34(7): 1429-1436.
  • 8Sarkar B, Singh L K, Sarkar D. A genetic algorithm-based approach for detection of significant vertices for polygonal approximation of digital curves [J]. International Journal of Image and Graphics, 2004, 4(2) : 223-239.
  • 9Yin P Y. Ant colony search algorithms for optimaI approximation of plane curve [J]. Pattern Recognition, 2003, 36(8), 1783-1797.
  • 10Yin P Y. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves [J]. Journal of Visual Communication and hnage Representation, 2004, 15 (2) :241-260.

共引文献15

同被引文献26

  • 1Handl J, Knowles J. An evolutionary approach to multiohjec- tire clustering [J]. IEEE Transactions on Evolutionary Com- putation, 2007, 11 (1): 56-76.
  • 2Saha S, Bandyopadhyay S. A symmetry based multiobjective clustering technique for automatic evolution of clusters [J]. Pattern Recognition, 2010, 43 (3): 738-751.
  • 3Qian Xiaoxue, Zhang Xianrong, Jiao Licheng, et al. Unsu- pervised texture image segmentation using multiobjective evolu- tionary clustering ensemble algorithm [C] //IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2008: 3561-3567.
  • 4Zhu Lin, Cao Longbing, Yang Jie. Multiobjective evolutionary algorithm-based soft subspace clustering [C] //IEEE Congress on Evolutionary Computation. NY, USA: IEEE, 2012.
  • 5Strehl A, Ghosh J. Cluster ensembles: A knowledge reuseframework for combining multiple partitions [J]. Journal of Machine Learning Research, 2008, 3 (3): 583-617.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist mul- tiobjective genetic algorithm: NSGA-II [J]. IEEE Transac- tions on Evolutionary Computation, 2002, 6 (2) : 182-197.
  • 7University of CaliTomia, Irvine. UCI machine learning reposi- tory [EB/OL]. [2013-09- 20]. http://archive, ics. uci. edu/ ml/datasets, html.
  • 8林济铿,王旭东,陈云山,陈北洋.基于可行解搜索和自适应免疫算法的配网重构[J].天津大学学报,2008,41(12):1505-1511. 被引量:6
  • 9邓泽林,谭冠政,范必双,叶吉祥.不同的距离测量方法对人工免疫识别系统的性能影响[J].计算机应用研究,2011,28(6):2043-2045. 被引量:1
  • 10秦亮,张文广,史贤俊,肖支才.基于免疫克隆算法的多目标聚类方法[J].信息与控制,2013,42(1):8-12. 被引量:7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部