期刊文献+

基于分形搜索树的嵌入式小波图像编码算法

Fractal-Searching-Tree-Based Embedded Wavelet Image Coding
下载PDF
导出
摘要 与单纯采用分形编码方法相比,基于小波的分形图像编码可以较好地解决方块效应问题且能够有效降低匹配搜索时间,但在低频子带使用分形编码会导致重构图像质量下降,同时针对匹配搜索仍是分形编码主要时间开销的问题,提出一种基于分形搜索树的嵌入式小波图像编码算法.采用Haar小波对图像进行多级分解,对低频子带直接采用DPCM编码,高频部分则依据不同尺度子带的重要性采取自适应方式划分值域块,然后构建一种分形搜索树结构以确定定义域池并采用"Z"形扫描进行匹配搜索,最后对获得的分形参数进行算术编码.实验结果表明,该算法重构图像质量比同类算法有所提高,特别在中低码率下PSNR值提高明显,当码率小于0.40bpp时,PSNR平均提高0.40~2.48dB,同时算法执行时间明显减少. Compared with fractal image coding, wavelet based fractal image coding can cope with block artifacts and reduce match-searching time effectively. But using fractal coding in low frequency sub- band will lead to poor reconstructed image, and the match-searching time is still the main overhead for fractal image coding. So a fractal-searching-tree-based embedded wavelet image coding algorithm is proposed. The image is decomposed to multiple-level sub-bands by means of Haar wavelet. For the low frequency sub-band, the DPCM coding is applied directly. For the high frequency sub-bands, a self-adaptive approach is adopted to partition each sub-band into different range blocks according to the significance of sub-bands with different size. Then a fractal searching tree structure is constructed to determine the domain pool in which match-searching is carried out in a manner of zigzag scanning. Finally, the arithmetic coding method is employed to encode the fractal parameters obtained. Experimental results show that better reconstructed images are obtained as compared with those by other similar algorithms, and the PSNR is remarkably improved in medium and low bit rate. When the bit rate is less than 0.40 bpp, the PSNR is promoted about 0.40-2.48 dB averagely. Meanwhile the running time of the algorithm is also reduced.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第7期1484-1490,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60736043) 黑龙江省科技攻关基金项目(GZ09A120) 黑龙江省教育厅科学技术研究基金项目(12521050)
关键词 图像压缩 小波变换 嵌入式图像编码 分形图像编码 迭代函数系统 匹配搜索 image compression wavelet transform embedded image coding fractal image coding iterated function system match-searching
  • 相关文献

参考文献13

  • 1Fisher Y. Fractal image compression [J]. Fractals,1994,2(3):321-329.
  • 2何传江,刘维胜,申小娜.基于规范子块五点和的快速分形图像编码[J].计算机研究与发展,2007,44(12):2066-2071. 被引量:9
  • 3Sankaragomathi B,Ganesan L,Arumugam S. Use ofwavelets in fractal compression algofithm for enhancedperformance [J]. International Journal of InformationSystems for Logistics and Management,2010,6(1):73-80.
  • 4Davis G M. A wavelet-based analysis of fractal imagecompression [J]. IEEE Trans on Image Procesvsing,1998,7(2):141-154.
  • 5Li Jih,Kuo C J. Image compression with a hybrid wavelet-fractal coder [J],IEEE Trans on Image Processing,1999,8<6):868-874.
  • 6Abdelwahab A A,Elmogazy H A. Wavelet-based adaptiveembedded fractal image coding [C] //Proc of the Int Conf onComputer Engineering and Systems. Piscataway 1 NJ:IEEE,2006:186-191.
  • 7Kim T,Van Dyck R E,Miller D J. Hybrid fractal zerotreewavelet image coding [J]. Signal Processing:ImageCommunication,2002,17(4):347-360.
  • 8Iano Y,da Silva F S,Cruz A L M. A fast and efficienthybrid fractal-wavelet image coder [J]. IEEE Trans onImage Processing,2006,15(1):98-105.
  • 9Jacquin A E. Fractal image coding:A review [J],Proc ofthe IEEE,1993,81(10).. H51-14S5.
  • 10Khoo H-K,Ong H-C,Weng Y-P. Image textureclassification using combined grey level co-oceurrenceprobabilities and support vector machines [C] //Proc of the1th Int Conf on Computer Graphics,Imaging andVisualization. Los Alamitos,CA:IEEE Computer Society,2008:180-184.

二级参考文献41

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部