期刊文献+

基于变分迭代法的悬挂式弹簧系统的跌落破损评价 被引量:6

Dropping Damage Evaluation of Suspension Spring System Based on Variational Iteration Method
下载PDF
导出
摘要 以悬挂式弹簧系统为研究对象,应用变分迭代法求解系统跌落冲击无量纲动力学方程,得到了系统无量纲位移、加速度响应一阶近似解析解,无量刚位移响应峰值,无量纲加速度响应峰值和无量刚跌落冲击持续时间表达式,与龙格-库塔数值分析结果进行了比较。结果表明,无量纲加速度响应曲线吻合程度较好,无量纲加速度响应峰值和无量刚跌落冲击持续时间相对误差小于4%和2%。建立了包含系统参数、产品脆值、无量纲跌落冲击速度、系统悬挂角等多变量的跌落冲击破损评价方程。以无量纲跌落冲击速度和系统参数为基本评价量,获得了系统跌落破损边界曲线;以无量纲跌落冲击速度、系统参数和初始悬挂角为基本评价量,获得了系统跌落破损边界曲面。结果表明,随着系统初始悬挂角减小,系统安全性能提高,悬挂系统几何非线性特性对产品保护性能优于线性系统。为悬挂式系统缓冲设计提供了理论依据。 Suspension spring system was taken as research object. The non-dimensional dynamic equation of dropping impact of the system was solved by variational iteration method. The first-order approximate analytical solutions such as non-dimensional displacement and non-dimensional acceleration were obtained. Analytical solutions of non-dimensional peak displacement, non-dimensional peak acceleration, and dropping shock extended period were obtained and com- pared with Runge-Kutta method. The results showed that the non-dimensional acceleration response-time curves agree well, and relative errors of non-dimensional acceleration peak value and dropping shock extended period are less than 4% and 2% respectively. The damage evaluation equation combined with system parameter, product fragility, non-di- mensional dropping velocity and suspension angle was established. System parameter and dimensionless dropping shock velocity were selected as two basic evaluation quantities, and dropping damage boundary curves were obtained. Curved surface of dropping damage boundary was obtained by using dimensionless dropping shock velocity, system parameter, and initial suspension angle as basic evaluation quantity. The results showed that the system security performance in- crease with decrease of suspension angle; the suspension geometry nonlinear system characteristics is superior to the linear system in product protection. The purpose was to provide reference for suspension spring system design.
作者 宋爽 陈安军
出处 《包装工程》 CAS CSCD 北大核心 2013年第13期36-39,46,共5页 Packaging Engineering
关键词 悬挂弹簧系统 几何非线性 变分迭代法 破损评价方程 跌落破损边界 suspension spring system geometric nonlinear variational iteration method damage evaluation equation dropping damage boundary
  • 相关文献

参考文献14

  • 1NEWTON R E. Fragility Assessment Theory and Practice [ R ]. Monterey Research Laboratory, Inc. Monterey, Cali-fornia, 1968.
  • 2WANG Jun, JIANG Jiu-hong, LU Li-xin, et al, Dropping Dam- age Evaluation for a Tangent Nonlinear System with a Critical Component [ J ]. Computers and Mathematics with Applications, 2011,61 (8) : 1979-1982.
  • 3WANG Zhi-wei. Dropping Damage Boundary Curves for Cu- bic and Tangent Package Cushioning Systems [ J ]. Packa- ging Technology and Science,2002,15:263-266.
  • 4WANG Zhi-wei. On Evaluation of Product Dropping Damage [ J ]. Packaging Technology and Science,2002,15 : 115-120.
  • 5HE J H. Variational Iteration Method-new Development and Application [ J ]. Computer and Mathematics with Applica- tions ,2007,54 (7-8) :881-894.
  • 6HE J H. Variational Iteration Method-some Recent Result and New Interpretations [ J ]. Journal of Computational and Applied Mathematics ,2007,207( 1 ) :3-17.
  • 7WANG Jun, KHAN Y, YANG R H, et al. A Mathematical Modelling of Inner-resonance of Tangent Nonlinear Cushio- ning Packaging System with Critical Components[ J]. Math- ematical and Computer Modelling,2011,54:2573-2576.
  • 8WANG Jun, WANG Zhi-wei, DUAN F, et al. Dropping Shock Response of Corrugated Paperboard Cushioning Packaging System[J]. Journal of Vibration and Control,2013,19 ( 3 ) : 336-340.
  • 9吴晓,杨立军.悬挂弹簧几何非线性减振系统的固有振动特性[J].振动与冲击,2008,27(11):71-72. 被引量:13
  • 10吴晓,罗佑新,杨立军,孙逢春.基础位移作用下悬挂弹簧的非线性固有振动[J].北京理工大学学报,2009,29(12):1041-1043. 被引量:14

二级参考文献19

共引文献16

同被引文献46

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部