摘要
设 X为取值于 d+ 1维空间中单位球面上的单位随机向量,具有概率密度函数 f(x)本文讨论密度函数f(x)的估计问题,给出了基于方向数据的最近邻估计,并建立这种最近邻估计的逐点强,弱相合性,一致强相合性及渐近正态性。
Let X be a unit random vector, taking value on the surface of a unit sphere in d + 1 dimensional Euclidean space, with pdf f(x) which needs to be estimated. In this paper, we intruduce a kind of nearest neighbor estimator of f(x) based on directional data and establish pointwise, strong and weak consistency, uniformly strong consistency and asymptotic normality for this estimator. The results obtained in this paper are fundamentally similar to those based on Euclidean data in Rd.
出处
《生物数学学报》
CSCD
2000年第3期332-338,共7页
Journal of Biomathematics
基金
国家教委博士点基金
上海财经大学211工程基金
关键词
方向数据
最近邻估计
逐点相合性
密度函数
Directional data
Nearest neighbor estimator
Pointwise consistency
Uniformly consistency
Asymptotic normality