期刊文献+

改进的动态面鲁棒自适应飞行控制律设计 被引量:1

Design of Flight Control Law Based on Improved Dynamic Surface Robust Adaptive Control
下载PDF
导出
摘要 提出一种改进的动态面鲁棒自适应飞行控制律设计方法;动态面飞行控制律消除了反推设计中由于对虚拟控制反复求导而导致的复杂性问题;利用RBF神经网络在线逼近飞机气动参数变化引起的非线性和不确定性,并以所有神经网络权值范数平方的最大值为更新参数来设计控制器,仅一个参数需要更新;基于Lyapunov稳定性定理证明了闭环系统的所有信号半全局一致最终有界;飞机俯仰运动飞行的数值仿真表明:在考虑气动参数摄动的情况下,轨迹角跟踪仍很好地实现,且兼具控制器结构简单、计算量小和鲁棒性强的特点。 Flight control law based on improved dynamic surface robust adaptive control approach is proposed. The complex problem in traditional backstepping design, which is caused by repeated differentiations of virtual control, is eliminated by dynamic surface control meth od. On line parameter update laws that make use of neural networks are used to approximate the aerodynamic parameters nonlinear and un ccrtainties. The Minimax norm of all NN weight vetor is defined as updated parameter, only one parameter is needed to be estimated on line. Based on Lyapunov theorem, it is proved that all signals in the closeloop syatem are guaranteed to be semiglobally uniformly ulti mately bounded. Simulation results for aircraft pitch movement demonstrate that considering aerodynamic parameters disturbances the control law still can accomplish angle track very well, and guarantee a simpler controller structure, small numeration and good robustness.
出处 《计算机测量与控制》 北大核心 2013年第6期1552-1555,共4页 Computer Measurement &Control
基金 国家自然科学基金资助(60904038)
关键词 飞行控制 动态面控制 神经网络 自适应控制 Flight control Dynamic surface control Neural network Adaptive control
  • 相关文献

参考文献10

  • 1王美仙,李明,张子军.飞行器控制律设计方法发展综述[J].飞行力学,2007,25(2):1-4. 被引量:29
  • 2Sharma M. , Farrell J. , Polycarpou M. , et al. Backstepping flight control using on-line function approximation [-A3. //AIAA Guid- ance, Navigiation, and Control Conference [-C]. USA: AIAA- 2003 - 5713, 2003.
  • 3Farrell J. , Sharma M. , Polycarpou M. Backstepping-based flight control with adaptive function approximation [-J']. Journal of Guid- ance, Control, and Dynamics, 2005, 28 (6): 1089-1102.
  • 4郭锁风,申建章,吴成富.先进飞行控制系统[M].北京.国防工业出版社,2003.
  • 5鲁道夫著,金长江译.飞行控制[M].北京:国防工业出版社,1999:60-65.
  • 6Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control EM. Boston MA: Kluwer, 2002.
  • 7Swaroop D, Hedrick J K, Yip P P, et al. Dynamic Surface Control for a Class of Nonlinear Systems [-J-]. IEEE Trans. on Automatic Control, 2000, 45 (10): 1893- 1899.
  • 8Wang Dan, Huang Jie. Neural network- based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict- feedback form. IEEE Trans. on Neural Net-works, 2005, 16 (I): 195 - 202.
  • 9刘树光,孙秀霞,董文瀚,张龙军.一类纯反馈非线性系统的简化自适应神经网络动态面控制[J].控制与决策,2012,27(2):266-270. 被引量:9
  • 10顾伟,黄志毅,刘小雄,章卫国.一种容错飞行控制的神经网络方法研究[J].计算机测量与控制,2010,18(6):1307-1311. 被引量:2

二级参考文献25

  • 1孙国强,胡寿松.基于神经网络动态逆的歼击机自适应跟踪控制[J].南京航空航天大学学报,2004,36(4):516-519. 被引量:6
  • 2刘小雄,章卫国,黄宜军.解析余度关键技术研究与发展趋势[J].计算机测量与控制,2005,13(7):710-712. 被引量:10
  • 3董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 4鲁道夫布罗克豪斯.飞行控制[M].北京:国防工业出版社,1999.9.
  • 5Mario G. Perhinschi, Marcello R. Napolitano, Giampiero Campa. Integration of fault tolerant system for sensor and actuator failures within the WVU NASA F-- 15 simulator [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Austin, Texas, U. S., 2003: 1-11.
  • 6Jason E. Wadley, Dallas R. Hopper, and James M. Buffington. Integrated failure Accommodation and upset recovery [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco [C]. California, U. S., 2005: 1-19.
  • 7Jovan D. Boskovic, Ravi K. Prasanth, and Raman K. Mehra. Reconfigurable fault--tolerant flight control: algorithms, implementation and metrics [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Keystone, Colorado, U. S. , 2006: 1-24.
  • 8Dong-- Ho Shin and Youdan Kim. Reconfigurable Flight Control System Design using adaptive neural networks [J]. IEEE Transactions on control systems technology, 2004, 12 (1): 87 -102.
  • 9Krstic M, KaneUakopoulos I, Kokotovic E Nonlinear and adaptive control design[M]. New York: Wiley, 1995.
  • 10Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control[M]. Norwell: Kluwer Academic, 2001.

共引文献50

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部