期刊文献+

基于增量式子空间学习的红外目标跟踪研究 被引量:1

Study of Infrared Target Tracking Based on Incremental Subspace Learning
下载PDF
导出
摘要 在对红外图像目标进行跟踪时,由于图像成像质量差致使目标的跟踪较为困难,采用一种基于增量式子空间学习的视觉跟踪方法,有效解决了红外图像中背景、目标运动方式复杂等问题;该方法基于粒子滤波,利用增量式主成分分析方法增量地学习一个有效的低维特征空间来适应目标外部结构的变化,鲁棒的跟踪红外图像中的目标;实验结果表明,该算法在具有复杂条件的红外图像中能够实现鲁棒的目标跟踪,跟踪成功率高达95%以上。 In the infrared image target tracking, due to poor quality of image formation the target tracking is very difficult, using a visual tracking methods based on the incremental learning space, effectively solved the infrared image problem in complex background or the complicated way of target motion. The method based on particle filter, using the Incremental Principal Component Analysis, incremental learning an effective low dimensional eigenspace representation to adapt to the changes in the external structure of target that expressed to follow up on the results, in order to robust track target in infrared image. The experimental results show that the algorithm in complicated conditions can be well implemented when tracking target of the infrared image.
出处 《计算机测量与控制》 北大核心 2013年第6期1668-1671,共4页 Computer Measurement &Control
基金 国家自然科学基金(61203268) 航空科学基金(20115896022)
关键词 红外图像 视觉跟踪 粒子滤波 增量式子空间学习 infrared image visual tracking particle filtering incremental subspace learning
  • 相关文献

参考文献10

  • 1David A. Ross, Incremental learning for robust visual tracking [-J']. International Journal of Computer Vision, 2008, 125 - 141.
  • 2M. J. Black and A. D. Jepson. Eigentracking Robust matching and tracking of articulated objects using view- based representa- tion. I-J. International Journal of Computer Vision, 1996, 329 - 342.
  • 3Li Yongmin, Xu Liqun, Jason M, et al. On Incremental and Robust Subspaee Learning [-J']. Pattern Recognition, 2004, 37 (7): 1509 -1518.
  • 4A. Levy and M. Lindenbaum. Sequential Karhunen-Loeve basis extraction and its application to images. [J. IEEE Transactions on Image Processing, 2000, 9 (8) : 1371 - 1374.
  • 5Michael Isard, Andrew Blake. Contour Tracking By Stochastic Propagation of Conditional Density [J. Proc. European Confer- ence on Computer Vision, 1996, 1:343 -356.
  • 6B. North and A. Blake. Learning dynamical models using expecta- tion- maximization, I-J]. In Proceedings of IEEE International Conference on Computer Vision, pages 368- 389, 1998.
  • 7B. Moghaddam and A. Pentland. Probabilistic visual learning for object detection, [J]. In Proceedings of IEEE International Confer- ence on Computer Vision, pages 786- 793, 1995.
  • 8Moghaddam B, Pentland A. Probabilistic Visual Learning for Object Recognition [-J']. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1997, 19 (7): 696-710.
  • 9张俊强,张华.基于图像处理的移动机器人对目标的识别和定位[J].计算机测量与控制,2006,14(5):673-675. 被引量:13
  • 10章毓晋.图像处理和分析[M].北京:清华大学出版社,2001..

二级参考文献3

共引文献34

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部