期刊文献+

在线支持张量机 被引量:3

Online Support Tensor Machine
下载PDF
导出
摘要 基于随机梯度下降法,提出了在线支持张量机(online support tensor machine,OSTM)算法。该算法的学习数据是张量模式,并以序列方式获取。算法利用张量秩一分解来代替原始张量辅助内积运算,不仅保持了原始张量的自然结构信息和关系,也极大地节省了存储空间和计算时间。在13个张量数据集上的实验表明,与在线支持向量机相比,在拥有可比的测试精度的情况下,在线支持张量机具有更快的训练速度,尤其对于高阶张量,其优越性更明显。 Based on the stochastic gradient descent method, this paper proposes online support tensor machine (OSTM) algorithm for tensor classification. In OSTM, its input patterns are tensors which are collected one by one in a sequence. In order to maintain the natural structure and correlation in the original tensor data, and reduce training time and memory space, OSTM algorithm applies tensor rank-one decomposition to replace the original tensor and assist tensor inner computation. The experiments on thirteen tensor datasets show that compared with the online sup- port vector machine, OSTM can provide a significant improvement in training speed with comparable test accuracy, especially for higher-order tensors.
出处 《计算机科学与探索》 CSCD 2013年第7期611-619,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 No.61273295 中央高校基本科研业务费专项资金 No.2012ZM0061~~
关键词 在线学习 支持张量机 支持向量机 张量秩一分解 online learning support tensor machine support vector machine tensor rank-one decomposition
  • 相关文献

参考文献34

  • 1Kivinen J, Smola A J, Williamson R C. Online learning with kernels[J]. IEEE Transactions on Signal Processing, 2004,52(8): 2165-2176.
  • 2Cavallanti G, Cesa-Bianchi N, Gentile C. Tracking the best hyperplane with a simple budget perceptron[J]. Machine Learning, 2007, 69(2/3): 143-167.
  • 3Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3): 273-297.
  • 4Li Vi, Long P M. The relaxed online maximum margin algorithm[J]. Machine Learning, 2002, 46(1/3): 361-387.
  • 5Lau K W, Wu Q H. Online training of support vector classifier[J]. Pattern Recognition, 2003, 36(8): 1913-1920.
  • 6JianghuaLiu,Jia-pinChen,ShanJiang,JunshiCheng.Online LS-SVM for function estimation and classification[J].Journal of University of Science and Technology Beijing,2003,10(5):73-77. 被引量:8
  • 7Crammer K, Kandola J, Singer Y. Online classification on a budget[M]IIAdvances in Neural Information Processing Systems 16. Cambridge, USA: MIT Press, 2004: 225-232.
  • 8Bottou L, Yann L C. On-line learning for very large datasets[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 137-151.
  • 9Platt J C. Fast training of support vector machines using sequential minimal optimization[M]// Advances in Kernel Methods: Support Vector Learning. Cambridge, USA: MIT Press, 1999: 185-208.
  • 10Bordes A, Ertekin S, Weston J, et al. Fast kernel classifiers with online and active learning[J]. Journal of Machine Learning Research, 2005, 6: 1579-1619.

二级参考文献1

  • 1J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters.1999(3)

共引文献7

同被引文献29

  • 1Vincent Rouet , Fr6d6ric Minault, Guillaume Dian- court, et al. Concept of smart integrated life con- sumption monitoring system for electronics[J]. Mi- croelectronics Reliability, 2007,47(12) : 1921-1927.
  • 2Cavallanti G, Cesa-Bianchi N, Gentile C. Tracking the best hyperplane with a simple budget perceptron [J]. Machine Learning, 2007, 69(2/3): 143-167.
  • 3Orabona F, Castellini C, Caputo B, et al. On-line independent support vector maehines [J]. Pattern Recognition, 2010, 43(4): 1402-1412.
  • 4Zhao Peilin, Hoi S C H, Jin Rong. Double updating online learning [ J ]. Journal of Machine Learning Research, 2011, 12.. 1587-1615.
  • 5Tao Daeheng, Li Xuelong, Wu Xindong, et al. Su- pervised tensor learning[J]. Knowledge and Infor- mation Systems, 2007, 13(1) : 1-42.
  • 6Lu Haiping, Plataniotis K N, Venetsanopoulos A N. MPCA.. multilinear principal component analy- sis of tensor objects [J]. IEEE Transactions on Neural Networks, 2008, 19(1): 18-39.
  • 7Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455- 500.
  • 8Cortes C , Vapnik V . Support-vector networks [J]. Machine learning,1995, 20(3) : 273 -297.
  • 9Tao D , Li X , Hu W , et al. Supervised tensor learning[C] //DataMining, Fifth IEEE International Conference on. IEEE,2005.
  • 10He X , Cai D , Liu H , et al. Image clustering with tensor representation[C] //Proceedings of the 13th annual ACM international conferenceon Multimedia. ACM,2005.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部