期刊文献+

脉冲控制模式电弧等离子体对凹腔性能改变的研究 被引量:1

Research on the Performance Change of Cavity by Pulsed Control Plasma
原文传递
导出
摘要 基于准直流电弧放电热阻塞原理,以超燃燃烧室凹腔为研究对象,在凹腔后向台阶上部与凹腔底部靠近前壁面附近布置电极,脉冲控制方式产生丝状等离子体,分析了不同脉冲控制频率下壁面压力、剪切层、凹腔阻力以及质量交换率等性能参数的变化。结果表明:前后缘附近特征点的第一振荡特征频率都接近脉冲控制频率,之后的特征频率则与控制频率成倍频关系;丝状等离子体的存在破坏了凹腔内大回流区结构;等离子体对凹腔产生了预热效果;等离子体的存在减小了凹腔冷流阻力,且在较高控制频率下的阻力系数更低;凹腔质量交换率因等离子体的存在而大幅提高,较高控制频率下具有更高的质量交换率。 The effect of quasi-DC discharge plasma filament on the cavity in a scramjet combustor is numerically investigated based on the dominant thermal mechanism. The electrodes are located near the upper edge of the back- step and at the bottom of the cavity. And plasma filament is formed in pulsed control mode. Change of prformace parameters such as wall pressure, shear layer, cavity drag force and mass ex-change rate under the different pulsed control frequencies is analyzed. Simulation results demonstrate that the first oscillation frequencies of the key points are close to the pulsed control frequencies, and other oscillation frequencies are the multiple of the pulsed control frequencies. The big recirculation zone is destroyed by the plasma filament, yet the cavity is preheated. The drag coefficient drops more apparently with higher control frequency, while the rate of mass exchange increases much more by the plasma, the mass exchange rate is higher under higher control freGuencv.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第7期125-130,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(11205244) 高超声速冲压发动机技术重点实验室开放基金
关键词 物理光学 等离子体 热源 凹腔 脉冲控制 数值模拟 physical optics plasma heat source cavity pulsed control numerical simulation
  • 相关文献

参考文献12

  • 1T Mathur, M Gruber, K Jackson, et al: Supersonic combustion experiments with a cavity-based fuel iniector[J]. J Propulsion and Power, 2011, 17(1): 146-155.
  • 2T Mathur, K C Lin, P Kennedy, et al: Liquid JP-7 Combustion in a Scramjet Combustor[R]. AIAA Paper 2000-3581, 2000.
  • 3D Van Wie, D Risha, C Suchomel. Research Issues Resulting from an Assessment of Technologies for Future Hypersonic Aerospace Systems[R]. AIAA Paper 2004-1357, 2004.
  • 4A Klimov, V Bityurin, V Brovkin, et al: Plasma generators for combustionEC2. Workshop on Thermo-Chemical Processes in Plasma Aerodynamic, 2000. 74.
  • 5S B Leonov, D A Yarantsev, G G Valery, et al: Mechanisms of Flow Control by Near Surface Electrical Discharge Generation[R]. AIAA Paper 2005-0780, 2005.
  • 6S B Leonov, D A Yarantsev, V G Gromov, et al: Mechanisms of flow near surface electrical discharge generation[J]. Vacuum, 2006, 80(11): 1199-1205.
  • 7Sergey B Leonov, Dmitry A Yarantsev. Plasma Assisted Ignition and Flame Holding in High Speed Flow[R]. AIAA Paper 2006-563, 2006.
  • 8Hai-Xing Wang, Fu-Zhi Wei, A B Murphy, et al: Numerical investigation of the plasma flow through the constrictor of arc-heated thrusters[J]. J Phys D: Appl Phys, 2012, 45(23) : 235202.
  • 9John D Anderson.McGraw-Hill.计算流体力学入门[M].吴颂平,刘赵森译.北京:清华大学出版社,2002.
  • 10王健,李应红,程邦勤,苏长兵,宋慧敏,吴云.等离子体气动激励控制激波的机理研究[J].物理学报,2009,58(8):5513-5519. 被引量:20

二级参考文献21

  • 1Bletzinger P,Ganguly B,van Wie D,Garscadden A 2005 J.Phys.D 38 R33.
  • 2Merriman S,Ploenjes E,Palm P,Adamovich I V 2000 Am.Inst.Aeronaut.Astronaut.Conf.2327.
  • 3Merriman S,Christian A,Meyer R,Kowalczyk B,Palm P,Adamovich I V 2001 Am.Inst.Aeronaut.Astronaut.Conf.0347.
  • 4Meyer R,Palm P,P loenjes E,Ritch J V,Adamovich I V 2001 Am.Inst.Aeronaut.Astronaut.Conf.3059.
  • 5Merriman S,Ploenjes E,Palm P,Adamovich I V 2001 Am.Inst.Aeronaut.Astronaut.J.39 1547.
  • 6Leonov S B,Yarantsev D A,Solov iev V R 2006 Am.Inst.Aeronaut.Astronaut.Conf.403.
  • 7Leonov S B,Bityurin V A,Yarantsev D A 2005 Am.Inst.Aeronaut.Astronaut.Conf.3287.
  • 8Leonov S B,Yarantsev D A,Isaenkov Y I 2005 Am.Inst.Aeronaut.Astronaut.Conf.159.
  • 9Leonov S B 2005 American ASTIA Documents-A 433384.
  • 10Qiu X M,Tang D L,Sun A P,Liu W D,Zeng X J 2007 Chin.Phys.16 186.

共引文献34

同被引文献21

  • 1帅词俊,段吉安,苗健宇,钟掘.光纤耦合器预拉时熔锥区的热分析[J].中南大学学报(自然科学版),2004,35(4):618-621. 被引量:7
  • 2洪长青,韩杰才,张幸红,徐强.TiB_2-Cu复合材料热冲击损伤行为的数值模拟[J].稀有金属材料与工程,2006,35(1):47-51. 被引量:4
  • 3刘波.电力机车弓网离线电弧检测装置[D].成都:西南交通大学.2002.
  • 4Pal B. Fabrication and modeling of fused biconical tapered fiber couplers[J]. Fiber and Integrated Optics, 2003, 22(2): 97-117.
  • 5Nagata H. Chemical properties of fused fiber coupler surface[J]. Optical Fiber Technology, 2000, 6(3): 324-328.
  • 6Shuai C, Gao C, Nie Y, et al.. Performance improvement of optical fiber coupler with electric heating versus gas heating[J]. ApplOpt, 2010, 49(24): 4514-4519.
  • 7Yokota H, Sugai E, Sasaki Y. Optical irradiation method for fiber coupler fabrications[J]. Optical Review, 1997,4(1 A): 104-107.
  • 8Yablon A D. Optical Fiber Fusion Splicing[M]. Berlin: Springer, 2005. 21-23.
  • 9Bayle F, Meunjer J P. Efficient fabrication of fused-fiber biconical taper structures by a scanned CO2 laser beam technique[J]. ApplOpt, 2005, 44(30): 6402-6411.
  • 10Takeuchi Y, Hirayama M, Sumida S, et al.. Characteristics of ceramic microheater for fiber coupler fabricationfj]. Japanese Journalof Applied Physics, 1998, 37(6B); 3665-3668.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部