期刊文献+

铯原子磁力仪中缓冲气体的最佳条件研究(英文) 被引量:4

Optimized Condition for Buffer Gas in Cesium Atomic Magnetometer
原文传递
导出
摘要 介绍了基于共振吸收法检测椭圆率变化的全光铯原子磁力仪的基本原理。为了降低工作介质碱金属铯原子的横向弛豫速率,延长自旋极化时间,使磁力仪达到较高的磁测灵敏度,通常将最外层电子排列稳定的惰性气体He和双原子分子N2作为缓冲气体充入铯原子气室中,这样既能有效地减少极化原子与气室壁碰撞的几率,又可以很好地避免辐射陷阱现象。分析了He和N2的压强对Cs原子极化程度及磁力仪输出信号的影响,给出了100℃时实现无自旋交换弛豫铯原子磁力仪的最佳压强:He约为3.9×104 Pa,N2约为3.6×103 Pa。 This paper described the principle of an all-optical cesium magnetometer based on absorptive detection. In order to reduce transverse relaxation rate and to maximize spin polarization time of the alkali-metal atoms, it is usually to fill the inert gas He and the diatomic molecule N2 which are used as buffer gases into the cell to achieve high measuring sensitivity. Not only the collision probability of polarized atoms with the cell wall but also the radiation trapping can be reduced or avoid by this approach. The relationships between the output signals of this magnetometer with buffer gas pressures were expressed here. Mter a detail theoretical analysis, it was found that the optimal gas pressure of the buffer gas was about 3.9×10^4 Pa for helium (He) and 3.6 × 103 Pa for nitrogen (N2).
机构地区 哈尔滨工程大学
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第7期137-141,共5页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61174192) 中央高校基础研究基金
关键词 量子光学 缓冲气体 磁力仪 弛豫 quantum optics buffer gas cesium magnetometer relaxation
  • 相关文献

参考文献23

  • 1I M Savukov, M V Romalis. NMR detection with an atomic magnetometer[J]. Phys Rev Lett, 2005, 94(12): 123001.
  • 2Dmitry Budker, Michael Romalis. Optical magnetometry[J]. Nature Physics, 2007, 3(4) : 227 - 234.
  • 3H B Dang, A C Maloof, M V Romalis. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Appl Phys Lett, 2010, 97(15) : 151110.
  • 4M P Ledbetter, I M Savukov, V M Acosta, a al: Spin-exchange relaxation-free magnetometry with Cs vapor[J]. Phys Rev A, 2008, 77(3): 033408.
  • 5H Xia, A Ben-Amar Baranga, D Hoffman, et al: Magnetoencephalography with an atomic magnetometer[J]. Appl Phys Lett, 2006, 89(21): 211104.
  • 6W Chalupczak, R M Godun, S Pustelny. Room temperature femtotesla radio-frequency atomic magnetometer[J]. Appl Phys Lett, 2012, 100(24): 242401.
  • 7Pavel Ripka. Advances in fluxgate sensors[J] Sensors and Actuators A, 2003, 106(1) : 8 - 14.
  • 8Ya S Greenberg. Application of superconducting quantum interference devices to nuclear magnetic resonance[J]. Rev Mod Phys, 1998, 70(1): 175-222.
  • 9J Belfi, G Bevilacqua, V Biancalana, et al: Cesium coherent population trapping magnetometer for cardiosignal detection in unshielded environment[J]. J Opt Soc Am B, 2007, 24(9) : 2357 - 2362.
  • 10Peter D D Schwindt, Svenja Knappe, Vishal Shah, et al: Chip-scale atomic magnetometer[J]. Appl Phys Lett, 2004, 85(26) : 6409 - 6411.

同被引文献30

  • 1科尼.原子光谱学和激光光谱学[M].北京:科学出版社,1984:491-492.
  • 2Johnson C, Schwindt P, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer [J]. Appl Phys Lett, 2010, 97(24): 243703.
  • 3Wyllie R. The Development of a Multichannel Atomic Magnetometer Array[D]. Madison: University of Wisconsin Madison, 2012. 1-5.
  • 4Mathe V, Leveque F, Mathe P E, et al.. Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case[J]. J App Geophys, 2006, 58(3): 202-217.
  • 5Meyer D, Larsen M. Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2): 75-82.
  • 6Harle P, Wackerle G, Mehring M. A nuclear-spin based rotation sensor using optical polarization and detection methods[J]. Appl Magn Reso, 1993, 5(2): 207-220.
  • 7John P, Wikswo J. Squid magnetometers for biomagnetism and nondestructive testing: important questions and initial answers[J]. IEEE T App Supercon, 1995, 5(2): 74-120.
  • 8Robbes D. Highly sensitive magnetometers--a review[J]. Sensor Actuat A--Phys, 2006, 129(1-2): 86-93.
  • 9Kominis I K, Kornack T W, Allred J C, et al.. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003,422(6932): 596-599.
  • 10Lee S K, Sauer K L, Seltzer S J, et al.. Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance[J]. Appl Plays Lett, 2006, 89(21): 214106.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部