期刊文献+

六角链的Szeged指标的计算 被引量:2

The Calculation of the Szeged Index of Hexagonal Chain
下载PDF
导出
摘要 六角链由边长为1的正六角形构成,它们对于理论化学来说极其重要.介绍了一种计算六角链的Szeged指标的计算方法,并给出了一类六角链的该指标的计算结果. Hexagonal chains are exclusively constructed by hexagons of length one, they are of great importance for theoretical chemistry. A method of calculating the Szeged index of hexagonal chains is proposed in this paper; and the results of this index are presented.
作者 江蓉
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期12-15,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 Szeged指标 六角链 计算 Szeged index hexagonal chain calculating
  • 相关文献

参考文献7

  • 1GUTMAN I, POLANSKY O E. Mathematical Concepts in Organic Chemistry [M]. Berlin: Spinger, 1986.
  • 2KHADIKAR P V, DESHPANDE N V, KALE P P, et al. The Szeged and an Analogy with the Winner Index [J].J Chem Inf Comput Sci, 1995, 35: 547--550.
  • 3DAS K C, GUTMAN I. Estimating the Szeged Index [J]. Applied Mathematics Letters, 2009, 22:1680--1684.
  • 4KHADIKAR P V, KALE P P, DESHPANDE N, et al. Novel PI Indices of Hexagonal Chains [J]. Journal of Mathe- matical Chemistry, 2001, 29: 143--150.
  • 5KHADIKAR P V, KARMARKAR S, AGRAWAL V K. A Novel PI Index and its Applications to QSRP/QSAR Studies [J]. J Chem Inf Comput Sci, 2001, 41(4):934--949.
  • 6吴廷增,扈生彪.几类图的零度[J].西南大学学报(自然科学版),2010,32(4):97-100. 被引量:7
  • 7王守中,江蓉.2-共振四角系统的刻画[J].西南师范大学学报(自然科学版),2010,35(5):26-28. 被引量:1

二级参考文献23

  • 1卢春,程小平.结合零树的小波域分形水印算法[J].西南农业大学学报(自然科学版),2006,28(6):1053-1056. 被引量:3
  • 2马海成.路并的匹配等价图数[J].西南师范大学学报(自然科学版),2007,32(3):6-9. 被引量:10
  • 3Cvetkovie D M, Doob M, Sachs H. Spectra of Graphs [M]. New York: Academic Press, 1980.
  • 4Sciriha I, Gutman I. On the Nullity of Line Graphs of Trees [J]. Discr Math, 2001, 232:35 -45.
  • 5Woo R, Neumaier A. On Graph Whose Spectral Radius is Bounded by 3/2√2 [J]. Graphs and Combin, 2007, 23: 713 - 726.
  • 6Tan X Z, Liu B L. On the Nullity of Unicyclic Graphs [J]. Linear Algebra and Appl, 2005, 408:212 -220.
  • 7Smith J H. Some Properties of the Spectrum of a Graph [M] //Combinatorial Structures and their Applications. New York: Gordon and Breach, 1970.. 403- 406.
  • 8Brouwer A E, Neumaier A. The Graphs with Spectral Radius between 2 and √2+√5[J].Linear Algebra Appl, 1989,114/115:273 - 276.
  • 9Cvetkovie D M, Gutman I. The Algebraic Multiplicity of the Number Zero in the Spectrum of a Bipartite Graph [J]. Mat Vesnik, 1972, 9: 141-150.
  • 10Zhang Heping. The Connectivity of Z Transformation Graphs of Perfect Matchings of Polyminoes [J]. Discrete Math, 1996, 158: 257- 272.

共引文献6

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部