期刊文献+

热传导方程反问题未知边界的稳定数值算法

A Stable Numerical Algorithm for a Heat Conduction Inverse Problem with Unknown Right Boundary
下载PDF
导出
摘要 热传导方程反问题在物理学中模拟均匀的多孔介质流时经常会被碰到,该类问题由一个右边界未知的线性热传导方程以及在指定内点上测量所得的数据条件构成.为了能够求解该类线性反问题,将首先证明解的唯一性,然后给出全新的离散后有限差分格式求解该反问题.讨论了该格式的稳定性,最后给出数值试验,以此来表明该方法的有效性和可行性. A one -dimensional heat conduction inverse problem is a common one in the study of the simulation of homogeneous porous medium flow in physics. This problem consists of a linear heat conduction equation unknown at the right boundary and a data condition measured at an interior specified point. In order to solve this linear inverse problem, the uniqueness of the solution is firstly proven. Then, a new finite difference scheme after a complete discretization is given for the solution to the inverse problem. Stability conditions for numerical solution to the inverse problem are also discussed. Finally, numerical results of experiments are provided to prove the feasibility and effectiveness of the methods suggested.
作者 汪平
出处 《西安文理学院学报(自然科学版)》 2013年第3期8-11,56,共5页 Journal of Xi’an University(Natural Science Edition)
关键词 一维热传导方程 反问题 线性 有限差分格式 稳定性 one - dimensional heat conduction equation inverse problem linear differencescheme stability
  • 相关文献

参考文献5

  • 1LIU J B ,TANG J. Variational iteration method for solving an inverse parabolic equation[J]. Physics Letter A,2008,372: 3569 - 3572.
  • 2CANNON J R. Determination of an unknown coefficient in a parabolic differential equation[ J]. Duke Math. J 313 -323.
  • 3DOUGLAS J Jr,JONES B F. The determination of a coefficient in a parabolic differential equation[ J]. Part II approximation, J. Math. Meeh, 1962,11:919 - 926. 1963,30: Numerical.
  • 4汪平.含两个未知边界的抛物型方程反问题稳定数值算法[J].江汉大学学报(自然科学版),2012,40(3):5-8. 被引量:1
  • 5郭定辉.偏微分方程基本教程[M].北京:北京航空航天大学出版社,2012:112-113.

二级参考文献5

  • 1Shidfar A,Karamali G R. An inverse problem for a nonlinear diffusion equation nonlinear analysics [.ll. Theo Meth Appl, 1997, 28(4) :589-593.
  • 2Shidfar A, Karamali G R. Numerical solution of inverse heat conduction problem with nonstationary measure- ments [ J ]. Appl Math Comput, 2005,168 ( 1 ) : 540-548.
  • 3Shidfar A,Karamali G R,Damirchi J. An inverse heat conduction problem with a nonlinear source term Nonlin ear analysis [ J ]. Theo Meth Appl, 2006,65 : 615- 621.
  • 4Shidfar A,Damirchi J ,Reihani P. An stable numerical algorithm for identifying the solution of an inverse problem [ J ]. Appl Math Comput, 2007,190 : 231-236.
  • 5Frankel J I. Residual-minimization least-squares method for inverse heat conduction [J]. Comp Math Appl, 1996,32(4) : 117-130.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部