期刊文献+

基于模糊聚类的Web用户访问序列挖掘 被引量:2

Web User Browse Sequence Navigation Based on Fuzzy Clustering
下载PDF
导出
摘要 发现用户对网站的兴趣是Web挖掘的一个重要研究方向.根据用户的访问序列进行聚类分析,把用户归为不同的簇,可以给不同簇的用户提供个性化的服务,改善网站的组织结构,提高广告的投放效果. User interest mining is a focus in web mining research. In this study, fuzzy cluste- ring is conducted based on browse sequence mining. Users are classified as different clusters and personalized service can be provided for the users of the various clusters. As a result, the organizational structure of webs and ads release effect can be improved.
作者 韦相
出处 《西安文理学院学报(自然科学版)》 2013年第3期53-56,共4页 Journal of Xi’an University(Natural Science Edition)
基金 云南省教育厅科研基金项目(2011C122)
关键词 模糊聚类 WEB数据挖掘 访问序列 个性化服务 fuzzy clustering Web data mining browse sequence personalized service
  • 相关文献

参考文献8

  • 1CO0 LEY R, MOBASHER B. Grouping Web page references in to transact ions formining World Wide Web browsing pat- terns[ J]. In:Proc Knowledge and Data Engineering Workshop, New port Beach, CA , 1997. 245- 253.
  • 2CO0 LEY R, MOBASHER B. Data preparation formining World Wide Web browsing patterns [ J ]. Knowledge and Info rma tion Systems, 1999,1 ( 1 ) :207 - 213.
  • 3李桂英,李吉桂.基于模糊聚类的Web日志挖掘[J].计算机科学,2004,31(12):130-131. 被引量:13
  • 4DESHPANDE M , KARY PIS G. Selective markov models for predicting Web - pag eaccesses[ A]. Proceedings SIAM Int Conference on Data Mining[ C]. Chicago: [ s. n. ] ,2001.
  • 5许欢庆,王永成,孙强.基于隐马尔可夫模型的Web网页预取[J].上海交通大学学报,2003,37(3):404-407. 被引量:5
  • 6邓晶晶,蒋玉明,傅静涛.基于Web使用挖掘的实时聚类算法[J].四川大学学报(自然科学版),2007,44(4):803-806. 被引量:6
  • 7于鹏.模糊数学方法在数学建模中的应用[EB/OL].http://wenku.baidu.com/view/a39b71030740bele650e9a99.html.[2012-07-10].
  • 8于鹏.模糊关系[EB/OL].http://wenku.baidu.com/view/Oaldl2d084254b35eefd3411.html.[2012-07-10].

二级参考文献18

  • 1谷淑化,吕维先,马于涛.关于数据挖掘中聚类分析算法的比较[J].现代计算机,2005,11(3):26-29. 被引量:4
  • 2蒋外文,喻兴标,熊东平.Web使用挖掘研究[J].微机发展,2005,15(8):37-40. 被引量:6
  • 3Srivaastava J,et al. Web usage mining:Discovery and application of usage patterns from web data. SIGKDD Explorations, 2000,1(2)
  • 4Fu Y, Sandhu K, Shih M - Y. Clustering of Web users bsed on access patterns[A]. In:Proc. of the 1999 KDD Workshop on Web Mining[C], San Diego, CA. Springer- Verlag, 1999
  • 5Mobasher B, Cooley R, Srivastave J. Automatic personalization based on Web usage mining [R]: [Technical Report TR99010].Department of Computer Science, DePaul University, 1999
  • 6Bestravros A. Using speculation to reduce server load and service time on the www [A]. Proceedings of CIKM'95 [C]. Maryland :ACM, 1995. 403- 410.
  • 7Evangelos P,Markatos,Catherine E C.A top 10 approach for prefetching the Web [A]. Proceedings of INET'98 [C]. Switzerland :Internet Society, 1998.
  • 8Schechter S,Krishnan M, Michael S. Using path profiles to predict http requests [J]. Computer Networks and ISDN Systems, 1998,30:457-467.
  • 9SuYoung Y,Eunsook J,Jungmin S. Prefetching brandnew documents for improving the Web performance[EB/OL]. http ://www. isoc. org/inet 99/proceedings/posters/106. 1999-08-10/2001-11-13.
  • 10Deshpande M, Karypis G. Selective markov models for predicting Web- page accesses [A]. Proceedings SIAM Int Conference on Data Mining [C]. Chicago:[s. n. ], 2001.

共引文献20

同被引文献17

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部