期刊文献+

具有反馈控制的非自治两种群浮游生物相克系统的持久性和全局吸引性 被引量:5

Permanence and Global Attractivity of Non-Autonomous Allelopathic Phytoplankton Model for Two Species with Feedback Controls
下载PDF
导出
摘要 研究了一类具有反馈控制的非自治两种群浮游生物相克系统,借助于微分方程比较原理和通过构造适当的Lyapunov函数方法,得到了一组保证系统持久和正解全局吸引性的充分性条件,最后给出了数值模拟验证结果. An non-autonomous allelopathic phytoplankton model with feedback controls for two species is studied. Some sufficient conditions for the permanence and global attractivity of the system are obtained by constructing a suitable Lyapunov functional. Results of numerical simulations are provided.
出处 《沈阳大学学报(自然科学版)》 CAS 2013年第3期173-176,共4页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(11201075) 福建省自然科学基金资助项目(2011J01007) 福建省科技创新平台计划资助项目(2009J1007)
关键词 浮游生物 竞争 毒素 持久性 全局吸引性 phytoplankton competition toxicity permanence global attractivity
  • 相关文献

参考文献7

二级参考文献14

  • 1陆忠华,陈兰孙.食饵种群具有常数投放率的捕食──食饵模型分支问题[J].数学杂志,1994,14(4):541-548. 被引量:40
  • 2[4]Yang Kuang,Jakeuchi Y.Predator-Prey dynamics in model of prey disperal in two-patch enviroments [ J ].Mach.Biosci,1994,120:77 - 98.
  • 3[7]陈兰荪.数学生态学模型与研究方法[M].北京:北京科技出版社,1998.
  • 4[4]Yang Kuang,Jakeuchi Y. Predator-Prey dynamics in model of prey disperal in two-patch environments[ J]. Mach. Biosci, 1994, 120.77 - 89
  • 5Maynard-Smith J. Models in Ecology [M]. Cambridge:Cambridge University Press, 1974.
  • 6Chattophadyay J. Effect of Toxic Substances on a TwoSpecies Competitive System[J]. Ecol. Model, 1996 (84):287 - 289.
  • 7Sole J,Garcia-Ladona E,Ruardjij P, et al. ModellingAllelopathy Among Marine Algae[J]. Ecol. Model, 2005(183):373-384.
  • 8Bandyopadhyay M. Dynamical Analysis of a AllelopathicPhytoplankton Model [J]. J. Biol. Syst.,2006,14(2) -205-217.
  • 9Chen Fengde. On a Nonlinear Nonautonomous Predator-prey Model with Diffusion and Distributed Delay [J], J.Comput. Appl. Math.,2005,180(1) :33 - 49.
  • 10Chen Fengde, Li Zhong, Huang Yunjin. Note on thePermanence of a Competitive System with Infinite Delayand Feedback Controls [J ]. Nonlinear Anal. Real WorldAppl.,2007,8(2):680- 687.

共引文献8

同被引文献28

  • 1徐宝树,岳晓宁.一类带状态反馈捕食-食饵两种群功能性反应系统模型控制分析[J].沈阳大学学报,2005,17(6):82-85. 被引量:2
  • 2Chen L S,Lu Z Y,Wang W I3. The Effect of Delays on the Permanence for Lotka-Volterra Systems [J 3. Applied Mathematics Letters, 1995,8(4) :71 - 73.
  • 3Chen F D. Global Asymptotic Stability in n-species Non- autonomous Lotka-Volterra Competitive Systems with Infinite Delays and Feedback Control [J ]. Applied Mathematics and Computation, 2005,170(2) : 1452 - 1468.
  • 4Chen F I3. Global Stability of a Single Species Model with Feedback Control an Distributed Time Delay[J]. Applied Mathematics and Computation, 2006,178(2) :474 - 479.
  • 5Lin S Q, Lu Z Y. Permanence for Two-species Lotka- Volterra System with Delays[J]. Mathematical Biosciences and Engineering, 2006,3(1) : 137 - 144.
  • 6Korobeinikov A. A Lyapunov function for Leslie-Gower predator-prey models [ J ]. Appl Math Lett,2001,14 (6) :697 - 699.
  • 7Chen L J, Chen F D. Global stability of a Leslie-Gower predator-prey model with feedback controls [ J 3. Appl Math Lett,2009 (22) : 1 330 - 1 334.
  • 8Li Z, Han M H, Chcn F D. Influence of feedback controls on an autonomous Lotka-Voherra competitive system with infinite delays [J]. Nonlinear Anal: Real World Appl,2013(14) :402 -413.
  • 9Chen F D. Permanence of a single species discrete model with feedback control and delay [ J ]. Appl Math Lett, 2007,20 (7) : 729 - 733.
  • 10Chen F D. The permanence and global attractivity of Lotka-Volterra competition system with feedback controls [ J ]. Nonlinear A- nal: Real World Appl,2006(7) :133 -143.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部