期刊文献+

一类具有双时滞的恒化器模型的动力学分析

Dynamical Analysis for a Chemostat Model with Double Delays
原文传递
导出
摘要 对一个同时具有离散时滞和分布时滞的恒化器模型进行了研究,得到了模型正平衡点的存在性和稳定性的一些充分条件.同时,当选取时滞为参数时,发现在一定条件下时滞会引起系统平衡点稳定性的变化,进而最终得到了系统产生周期Hopf分支的条件. A chemostat model involving both discrete delay and distributed delay is consid- ered in this paper. Some sufficient conditions for the existence and stability of equilibriums of the corresponding model are discussed, nlrthermore, choosing the delay as a bifurcation parameter, it is shown that the delay can cause a stable equilibrium to become unstable under some conditions and the existence of periodic hopf bifurcations is obtained finally.
出处 《生物数学学报》 2013年第2期265-270,共6页 Journal of Biomathematics
基金 四川省教育厅科研基金项目(11ZB192)
关键词 时滞 平衡点 稳定性 HOPF分支 Time-delay Equilibrium Stability Hopf bifurcation
  • 相关文献

参考文献13

二级参考文献62

  • 1[1]Powell T, Richerson P J. Temporal variation, Spatial Heterogeneity and Competition for Resources in Plankton System:a Theoretical Model[J]. Am Nat,1985;125:431-464
  • 2[2]Svirezhev Y M, Logofet D O. Stability of biological communities[J]. Am Nat,1985;125:431-464
  • 3[3]Bereeta E, Bischi G I, Solimano F. Stability in chemostat equations with delayed nutrient recycling[J]. J Math Bio,1990;28:99-111
  • 4[4]Bereeta E, Takeuchi Y. Qualitative properties of chemostat equations with time delays I boundedness local and global asymptotic syability[J]. Differential Equations and Dynamical Systems, 1994;2:19-40
  • 5[5]Bereeta E, Takeuchi Y. Qualitative properties of chemostat equations with time delays Ⅱ: boundedness local and global asymptotic syability[J]. Differential Equations and Dynamical Systems,1994;2:263-288
  • 6[6]Bereeta E, Takeuchi Y. Global stability for chemostat equations with delayed nutrient recycling[J]. Nonlinear World, 1994; 1:291-306
  • 7[7]Frreedman H I, Xu Y. Models of competition in the chemostat with instantaneous and delayed nutrient recycling[J]. J Math Biol,1993;31:513-527
  • 8[8]Ruan S, He X. Global stability in chemostat-type competition models with nutrient recycling[J]. SIAM J Appl Math,1998;58:170-192
  • 9[9]Bereeta E, Fergola P, Tenneriello C. Chemostat equations for a predator-prey chain with delayed nutrient recycling[J]. J Biol Sys, 1985;483-484
  • 10[10]Fergola P, Rionero S, Tenneriello C. A qualitative analysis of an additive chemostat model of microorganisms competing for two complementary nutrients with delay recycling[J]. World Scientific Press Proc of 7th Conference on Waves and Stability in Continuous Media Series Advanced in Mathematics for Applied Science, 1995;123

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部