期刊文献+

一类三元中立型神经网络系统的振动性

Oscillation of A Class of Neutral Neural Network of Three Neurons
原文传递
导出
摘要 研究了一类三个神经元相互连接的中立型神经网络系统.利用Chafee准则,得到了系统存在振动解的充分条件.并做了数值模拟验证了结论. In this paper, we consider a neutral neural networks of three identical neurons coupled in certain way. The sufficient conditions of existence of permanent oscillation is estab- lished using Chafee's criterion. Numerical simulations are performed to support the anaIytical results.
机构地区 东北林业大学
出处 《生物数学学报》 2013年第2期292-296,共5页 Journal of Biomathematics
基金 中央高校基本科研业务费专项基金资助(项目编号:DL11AB02)
关键词 中立型 神经网络 振动 Neutral Neural network Oscillation
  • 相关文献

参考文献13

  • 1Hopfield J J. Neural networks and physical systems with emergent collective computational abili- ties[J].Proceedings of the National Academy of Sciences, 1982, 79(8):2554-2558.
  • 2Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences, 1984, 81(10):3088-3092.
  • 3Baldi P, Atiya A. HOW delays affect neural dynamics and learning[J]. Institute of Electrical and Electronics Engineers Transactions on Neural Networks, 1994, 5(4):612-621.
  • 4Campbell S A, Ncube I, Wu J. Multistability and stable asynchronous periodic oscillations in a multiple- delayed neural system [J]. Physica D Nonlinear Phenomena, 2006, 214(2):101-119.
  • 5Campbell S A, Ruan S, Wei J. Qualitative analysis of a neural network model with multiple time delays[J]. International Journal of Bifurcation and Chaos, 1999, 9(8):1585-1595.
  • 6Shayer L, Campbell S A. Stability, bifurcation, and multi-stability in a system of two coupled neurons with multiple time delays[J]. SIAM Journal on Applied Mathematics, 2000, 61(2):673-700.
  • 7Wu J, Faria T, Huang Y S. Synchronization and stable phase-locking in a network of neurons with memory[J]. Mathematical and Computer Modelling, 1999, 30(1):117-138.
  • 8Yuan Y, Campbell S A. Stability and synchronization of a ring of identical cells with delayed coupling[J]. Journal of Dynamics and Differential Equations, 2004, 16(3):709-744.
  • 9Li L, Yuan Y. Dynamics in three cells with multiple time delays[J]. Nonlinear Analysis: Real World Appli- cations, 2008, 9(3):725-746.
  • 10罗嗣卿,刘铭,徐晓峰.三元中立型时滞神经网络的稳定性分析[J].黑龙江大学自然科学学报,2011,28(3):336-340. 被引量:2

二级参考文献16

  • 1[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 2[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 3[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 4[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 5[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 6[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 7[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.
  • 8YUAN Yuan, CAMPBELL S A. Stability and synchronization of a ring of identical cells with delayed coupling[J]. J Dyn Differential Equations, 2004,16(3) : 709 -744.
  • 9CAMPBELL S A, N CUBE l, WU J. Multistability and stable asynchronous periodic oscillations in a multiple-Delayod neural system[ J ]. Physica D Nonlinear Phenom, 2006, 214(2) : 101 - 119.
  • 10LEITE M D C A, GOLUBITSKY M. Homogeneous three-cell networks[J]. Nonlinearity,2006, 19:2313 -2363.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部