期刊文献+

非线性脉冲时滞偏微分方程周期解的存在性 被引量:2

Existence of Periodic Solutions for Nonlinear Impulsive Partial Differential Equations with Time Delay
原文传递
导出
摘要 利用上下解和单调迭代法研究非线性脉冲时滞偏微分方程周期解的存在性,得到了解的存在性理论. By using the method of upper-lower solution and its associated monotone iter- ation to investigate the existence of periodic solutions for nonlinear impulsive partial differential equations with time delay ,the existence result of this system is obtained.
出处 《生物数学学报》 2013年第2期307-311,共5页 Journal of Biomathematics
基金 国家重点基础研究发展计划973课题(2011CB710602 2011CB710604) CUGYCXK0904
关键词 非线性 存在 周期解 脉冲 上下解 Nonlinear Existence Periodic solution Impulsive Upper-lower solutions
  • 相关文献

参考文献11

  • 1Wu J. Theory and Applications of Partial Functional Differential Equations[M]. New York: Springer-Verlag, 1996.
  • 2Erbe L H, Freedmann H I, Liu X Z, et al. Comparison principles for impulsive parabolic equations with application to models of single species growth[J]. J.Aust.Math.Soc.Ser, 1991, B32:382-400.
  • 3He L H, Liu A P. Existence and uniqueness of solutions for nonlinear impulsive partial equations with delay[J]. Nonlinear Analysis: Real World Applications, 2010, 11: 952-958.
  • 4Pao C V. Coupled nonlinear parabolic systems with time delays[J]. J.Math.Anal.Appl, 1995, 196:237-265.
  • 5Pao C V. Periodic Solution of Parabolic Systems with Time Delays[J]. J. Math.Anal. Appl, 2000, 251:251- 263.
  • 6Pao C V. Stability and attractivity of periodic solutions of parabolic systems with time delays[J]. J.Math.Anal.Ap. pl, 2005, 304:423-450.
  • 7Cheng Cui, Xiao wang. Existence and Stablity of Periodic Solutions and Almost Periodic Solutions of Immune Reaction Marchuk's Model[A].Processdings of the 5th International Congress on Mathematical Biology[C]. Nanjing:World Academic Press, 2011.
  • 8王长有,王术,李林锐.含时滞的反应扩散方程组周期解的存在与稳定性[J].数学杂志,2010,30(2):308-314. 被引量:2
  • 9张树文,陈兰荪.具有脉冲效应的非自治捕食者-食饵系统周期正解[J].大连理工大学学报,2004,44(3):320-325. 被引量:6
  • 10倪华,田立新,张平正.一类非线性Lotka-Volterra系统的正概周期解[J].生物数学学报,2011,26(2):329-338. 被引量:2

二级参考文献35

  • 1刘希强.一类反应扩散方程组的周期解或概周期解[J].工程数学学报,1994,11(4):107-110. 被引量:5
  • 2何猛省.一类含时滞的反应扩散方程的周期解和概周期解[J].数学学报(中文版),1989,32(1):91-97. 被引量:23
  • 3王克.一类具偏差变元的微分方程的周期解[J].数学学报(中文版),1994,37(3):409-413. 被引量:35
  • 4Tyson J. Belousov-Zhabotinskii reaction[M]. New York: Springer, 1976.
  • 5Murray J D. On travelliny wave solution in a model for the Belousov-Zhabotinskii reaction[J]. J. Theor. Biol., 1976, 56(2): 329-353.
  • 6Bange D W. Periodic solutions of a quasilinear parabolic differential equation [J]. Diff. Equs., 1975, 17(1): 61-72.
  • 7Pao C V. Periodic solution of parabolic systems with nonlinear boundary condition[J]. J. Math. Anal. Appl., 1999, 234(2): 695-716.
  • 8Brown K J, Hess P. Positive periodic solutions of predator-prey reaction-diffusion systems [J]. Nonlinear Anal. TMA, 1991, 16(12): 1147-1158.
  • 9Fang Wei, Lu Xin. Asymptotic periodicity in diffusive logistic equations with discrete delays[J]. Nonlinear Anal. TMA, 1996, 26(2): 171-178.
  • 10Wu Jianhong. Theory and applications of partial functional differential equations[M]. New York: Springer-Verlag, 1997.

共引文献10

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部