期刊文献+

具有质体非均匀恒化器模型的平衡态解 被引量:1

Bifurcation Solutions and Stability of Predator-Prey System with Predator Saturation and Competition
原文传递
导出
摘要 讨论了一类具有质体非均匀恒化器模型的平衡态解,首先利用上下解方法与极值原理得到恒化器模型的先验估计;然后利用不动点指标理论讨论恒化器模型正解的共存性,并且得到了正解存在的充分条件. In this paper, a competition model between plasmid-bearing and plasmid-free organisms in the unstirred chemostat is researched. Firstly, a priori estimation is obtained by use of upper and lower solution method and the maximum principle. Secondly, the sufficient condition of existence on the coexistence solutions are proved by applying fixed-point index theory.
出处 《生物数学学报》 2013年第2期312-318,共7页 Journal of Biomathematics
基金 国家自然科学基金(10726042) 陕西省教育厅科学基础研究计划项目(12JK0865) 西安工业大学校长基金(XAGDXJJ1136)
关键词 恒化器模型 不动点指标 平衡态解 Chemostat model Fixed point index Equilibrium solution
  • 相关文献

参考文献15

  • 1Stephanopoulos G, Lapidus G. Chemob:-t dynamics of plasmid-beaxing plasmid-free mixed recombinant cultures[J]. Chemical Engineering Science, 1988,43:49-57.
  • 2Hsu S B, Waltman P, Wollkowicz G S" K. Global analysis of a model of plasmid-beaxing, competition in the chemostat[J]. Journal of Mathematical Biology, 1994, 32:731-742.
  • 3Chao L, Levin B R. Structured habitats and the evolution of anti-competitor toxins in bacteria[J] of the National Academy of Sciences, 1981, 75:6324-6328.
  • 4plasmid-free Proceedings Levin B R. Frequency-dependent selection in bactrial populations[J]:Philosophical Transactions of The Royal Society of London Series B-Biological Sciences, 1988, 319:459-472.
  • 5Hsu S B, Waltman P. A model of the effect of the anti-competitor toxins on plasmid-bearing, plasmid-free competition[J]. Taiwan Residents Journal of Mathematics, 2002, 6(1):135-155.
  • 6Hsu S B, Waltman P. A survey of mathematical models of competition with an inhibitor[J]. Mathematical Biosciences, 2004, 187:53-97.
  • 7Wu J H, Nie H, Wolkowica G S K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat[J]. SIAM Journal on Mathematical Analysis, 2007, 38(6):1860-1885.
  • 8Wu J H, Nie H. Asymptotic behavior of an unstirred chemostat model with internal inhibitor [J]. Journal of Mathematical Analysis and Applications, 2007, 334:889 908.
  • 9Figueiredo D G, Gossez J P. Strict monotonicity of eigenvalues and unique continuation [J]. Comm. Partial Differential Equations, 1992, 17:339-346.
  • 10Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975, 44(1): 331-340.

二级参考文献10

  • 1Chen L S. Chen J. NonlinearDynamical Systems in Biology[M]. Beijing: Science Press, 1993, 183-191.
  • 2Hsu S B. Smith H I, Waltman P. Dynamics of competition in the unstirredChemostat[J]. Canadian Appl Math Quarterly. 1994,2(4):461-483.
  • 3So J W, Waltman P. A nonlinear boundary value problem arising from competition inthe Chemostat[J].Applied Math and Comp, 1989, 32(2 3):169-183.
  • 4Hsu S B, Waltman P. On a system of reaction-diffusion equations arising fromcompetition in an unstirred Chemostat [J], SIAM J Appl Math, 1993, 53(4):1026-1044.
  • 5Baxley J V, Thompson H B. Nonlinear boundary value problems and competition in theChcmostat [J].Nonlinear Analysis TMA, 1994, 22(11):1329-1344.
  • 6Bally M, Dung L, Jones D A et al. Effects of ramdom motility on microbial drowthadn compeition in a flow reactor [J]. SIAM J Appl Math, 1998, 59(2):573-596.
  • 7Baxley J V. Robinson S B. Coexistence in the unstired Chemostat[J]. Applied Mathand Comp. 1998, 89(13):41 -65.
  • 8Smoller J. Shock Waves and Reaction Diffusion Equations[M]. New York:Springer-Verlag, 1983, 167-180.
  • 9Hale J. Waltman P. Persistence in ininite dymensional systems[J]. SIAM J Math Anal,1989, 20(2):388-395.
  • 10刘婧,郑斯宁.未搅拌恒化器中单食物链模型的反应扩散方程组(英文)[J].生物数学学报,2002,17(3):263-272. 被引量:12

共引文献13

同被引文献15

  • 1Hua Nie,Jianhua Wu.Asymptotic behavior of an unstirred chemostat model with internal inhibitor[J]. Journal of Mathematical Analysis and Applications . 2007 (2)
  • 2S.-B. Hsu,Paul Waltman.A survey of mathematical models of competition with an inhibitor[J]. Mathematical Biosciences . 2003 (1)
  • 3J.H. Wu.Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Analysis . 2000 (7)
  • 4Sze-Bi Hsu,Paul Waltman,Gail S. K. Wolkowicz.Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat[J]. Journal of Mathematical Biology . 1994 (7)
  • 5Sze-Bi Hsu,Paul Waltman.A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free competition. Taiwan Residents Journal of Mathematics . 2002
  • 6Smoller J.Shock Waves and Reaction-Diffusion Equations. Journal of Women s Health . 1983
  • 7Levin B R.Frequency-dependent selection in bacterial populations. Philosophical transactions of the Royal Society of London. Series B, Biological sciences . 1988
  • 8Stephanopoulos, Gregory,Lapidus, Gary R.CHEMOSTAT DYNAMICS OF PLASMID-BEARING, PLASMID-FREE MIXED RECOMBINANT CULTURES. Chemical Engineering Science . 1988
  • 9L Chao,B R Levin.Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences of the United States of America . 1981
  • 10DeAngelis DL,Goldstein RA,O’Neill RV.A model for trophic interaction. Ecology . 1975

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部