期刊文献+

基于有限样本的可行广义最小二乘法——在解决虚假回归问题中的应用 被引量:7

FGLS Method Based on Finite Samples
原文传递
导出
摘要 本文在Choi等(2008)的基础上,研究样本量有限时,可行广义最小二乘(FGLS)法在解决虚假回归问题时的表现。通过蒙特卡罗模拟实验,发现FGLS方法可以有效消除单位根序列及平稳自相关序列间的虚假回归现象,但在单位根序列长度较小时,表现不佳。本文还以研究沪、深股市指数间关联关系为例,对差分普通最小二乘回归法和FGLS两种建模方法进行比较,结果表明当样本量足够大时,在动态预测精度的评价标准下,FGLS方法更好。 On the basis of Choi et al. (2008), this paper analyzes the performance of the feasible generalized least square (FGLS) method in Solving Spurious Regression Problems with finite samples. Through Monte Carlo simulations, we find that the FGLS method can effectively eliminate the spurious regression phenomenon, but if the length of unit root sequences is small, and its performance is poor. In addition, with the example of studying the Shanghai and Shenzhen stock market index relationship, we compare the differential ordinary least squares regression method and FGLS method, the results show that when the sample size is large enough, FGLS method is better under the dynamic forecast accuracy evaluation criteria.
作者 吴明华
出处 《数量经济技术经济研究》 CSSCI 北大核心 2013年第7期148-160,共13页 Journal of Quantitative & Technological Economics
基金 教育部人文社会科学研究项目(13YJC790159) 南开大学基本科研业务专项资金项目(NKZXB1146)资助
关键词 有限样本 广义最小二乘法 虚假回归 Finite Sample FGLS Method Spurious Regression
  • 相关文献

参考文献24

  • 1Blough S R. , 1992, The Relationship between Power and Level for Generic Unit Root Tests in Fi- nite Samples [J], Journal of Applied Econometrics, 7, 295-308.
  • 2Choi C. Y., Hu L., Ogaki M., 2008, Robust Estimation for Structural Spurious Regressions and a Hausman-type Cointegration Test [J], Journal of Econometrics, 142, 327-351.
  • 3Cochrane J. H. , 1991, A Critique of the Application of Unit Root Tests [J], Journal of Economic Dynamics and Control, 15, 275-284.
  • 4Cochrane, Orcutt, 1949, Application of Least Squares Regression to Relationships Containing Au- tocorrelated Error Terms[J], Journal of the American Statistical Association, 44, 32-61.
  • 5Granger C. W. J. , 2012, Useful Conclusions from Surprising Results[J], Journal of Economet- rics, 169, 142-146.
  • 6Granger C. W. J. , Hyung N. , Jeon Y. , 2001, Spurious Regressions with Stationary Series [J], Applied Economics, 33, 899-904.
  • 7Granger C. W. J. , Joyeux R. , 1980, An Introduction to Long-memory Time Series Models and Fractional Differencing [J], Journal of Time Series Analysis, 1, 15-29.
  • 8Granger C. W. J. , Newbold P. , 1974, Spurious Regressions in Econometrics [J], Journal of Econo- metrics, 2, 111-120.
  • 9Granger C. W. J., Newbold P. , 1977, Forecasting Economic Time Series[M], Academic Press.
  • 10Giraitis L. , Phillips P. C. B. , 2012, Mean and Autocovariance Functions Estimation Near the Boundary of Stationarity [J], Journal of Econometrics, 169, 166-178.

二级参考文献27

  • 1Entorf H. Random Walks with Drifts: Nonsense Regression and Spurious Fixed-Effect Estimation [ J ]. Journal of Econometrics, 1997,80(2) :287 -296.
  • 2Granger, C. W. J. and P. Newbold. Spurious Regression in Econometrics [ J ]. Journal of Econometrics, 1974,2 ( 2 ) : 111 - 120.
  • 3Hansen B. The New Econometrics of Structural Change: Dating Breaks in U. S. Labor Productivity [ J ]. Journal of Economic Perspectives, 2001,15 ( 4 ) : 117 - 128.
  • 4Kim,T. H, Lee Y. S and P. Newbold. Spurious Regressions with Stationary Processes Around Linear Trends [ J ]. Economics Letters,2004,83 ( 2 ) :257 - 262.
  • 5Marmol. Spurious Regressions for I ( d ) Processes [ J ]. Journal of Time Series Analysis, 1995,16 ( 3 ) :3 I3 - 321.
  • 6Marmol. Correlation Theory for Spuriously Related Higher Order Integrated Processes [ J ]. Economics Letters, 1996, 50 ( 2 ) : 163 - 73.
  • 7Nelson, C. R. and C. I. Plosser. Trends and Random Walks in Macroeconomic Time Series [ J ]. Journal of Monetary Economics, 1982,10(2) :139 -62.
  • 8Noriega, A. and D. Ventosa-Santauldria. Spurious Regression Under deterministic and stochastic trends. Working Paper EM-0601, School of Economics, University of Guanajuato,2006.
  • 9Noriega, A and D. Ventosa-Santaularia. Spurious regression and trending variables[J]. Oxford Bulletin of Economics & Statistics, 2007,69 ( 3 ) :439 - 444.
  • 10Perron P. The Great Crash,the Oil Price Shock and the Unit Root Hypothesis [ J ]. Econometrica, 1989,57 ( 6 ) : 1519 - 1554.

共引文献3

同被引文献109

引证文献7

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部