期刊文献+

基于FESS的混合模型脑图像分割方法 被引量:1

Brain image segmentation method with hybrid model based on FESS
下载PDF
导出
摘要 提出一种基于FESS的混合模型脑图像分割方法。其特点在于生成模型与判别模型得到了有效结合。生成模型通过条件随机场融合体素点的灰度信息、形状信息以及区域相邻关系,实现对脑子结构外观特征的描述。在此基础上,利用生成模型将训练样本映射到FESS特征空间;判别模型中采用LS-SVM分类器并将数据场应用于混合分割模型的训练过程中,降低了判别模型由于训练数据不平衡而引起的性能波动并提高其泛化能力。实验结果表明,与若干前沿的脑图像分割方法相比,该方法具有更好的分割质量和性能。 This paper presents a new brain image segmentation method based on free energy score space (FESS) ,which combines the advantages of both generative model and discriminative model. Through conditional random field, the gen- erative model fuses the grey scale information, shape information and spatial neighborhood relation of the volume pixels ; and the appearance feature description of subcortical structure is realized. Based on the above,the generative model is used to map the training samples to FESS feature space. Furthermore;in the discriminative model, the LS-SVM classifier is used and the data field is applied in the training process of the mixed segmentation model, which reduces the per- formance fluctuation of the discriminative model induced by the imbalanced training data sets and effectively improves the generalization capability. Experimental results show that the proposed model possesses better segmentation quality and performance compared with several other state-of-the-art brain image se^nentation approaches.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第6期1226-1232,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60701021) 中国石油大学(北京)基金(KYJJ2012-05-21)资助项目
关键词 FESS 生成模型 判别模型 图像分割 最小二乘支持向量机 数据场 free energy score space (FESS) generative model discriminative model image segmentation leastsquares support vector machine (LS-SVM) data field
  • 相关文献

参考文献18

  • 1POHL K M, FISHER J, KIKINIS R, et al. A Bayesian model for joint segmentation and registration [ J ]. Neuro- Image, 2006,31 : 228 -239.
  • 2MORRA J H, TU Z, APOSTOLOVA L G, et al. Compari- son of adaBoost and support vector machines for detecting Alzheimer' s disease through automated hippocampal seg- mentation[ J ]. IEEE Transactions on Medical Imaging, 2010,29( 1 ) :30-43.
  • 3BATMANGHELICH N K, TASKAR B, DAVATZIKOS C. Generative-discriminative basis learning for medical imaging[ J]. IEEE Transactions on Medical Imaging, 2012,31(1) :51-69.
  • 4TU Z, NARR K L, DOLLAR P, et al. Brain anatomical structure segmentation by hybrid discriminative/genera- tive models [ J ]. IEEE Transaction on Medical Imaging, 2008,27 (4) :495-508.
  • 5BOSCH A,ZISSERMAN A,XAVIER M. Scene classification using a hybrid generative/discriminative approach[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2008,30(4) :712-727.
  • 6MCCALLUM A, PAL C, DRUCK G, et al. Multi-condi- tional learning: Generative/discriminative training for clustering and classification [ C ]. National Conference on Artificial Intelligence ,2006:433-439.
  • 7XUE J H ,TITrERINGTON D M. On the generative-discrimi- native tradeoff approach: Interpretation, asymptotic efficiency and classification performance [ J ]. Computational Statistics and Data Analysis ,2010,54(2) :438-451.
  • 8XUE J H, T1TI'ERINGTON D M. Joint discriminative- generative modeling based on statistical tests for classifi- cation[ J]. Pattern Recognition Letters, 2010,31 (9 : 1048-1055.
  • 9BOUCHARD G,TRIGGS B. The tradeoff between generative and discriminative classifiers [ C ]. IASC International Sym- posium on Computational Statistics (COMPSTAT),Prague, 2004:721-728.
  • 10BATMANGHELICH N K, TASKAR B, DAVATZIKOS C. Generative-discriminative basis learning for medical imaging[ J]. IEEE Transactions on Medical Imaging, 2012,31(1) :51-69.

二级参考文献53

共引文献46

同被引文献21

  • 1李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 2杜彦良,牛学勤.现代轨道交通技术与装备[M].北京:科学出版社,2012.
  • 3KUMAR S. A study of the rail degradation process to pre- dict rail breaks [ D 1- Lule~ University of Technology, 2006.
  • 4JASIONIENE E, ~UKAUSKAS E. The ultrasonic wave interaction with porosity defects in welded rail head [ J ]. Uhragarsas (Ultrasound) , 2010, 65 ( 1 ) : 12-18.
  • 5VIDAUD M, ZWANENBURG W J. Current situation on rolling contact fatigue-a rail wear phenomenon [ C J. Pro- ceedings of the 9th Swiss Transport Research Conference, 2009 : 9-11.
  • 6MARINO F, DISTANTE A, MAZZEO P L,et al. A real- time visual inspection system for railway maintenance: Automatic hexagonal-headed bolts detection systems [ J J. IEEE Transactions on Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3) :418-428.
  • 7PAPAELIAS M P, ROBERTS C, DAVIS C L. A review on non-destructive evaluation of rails : state-of-the-art and future development [ J ]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 367-384.
  • 8MANDRIOTA C,NITYI M, ANCONA N, et al. Filter- based feature selection for rail defect detection [ J 1. Ma- chine Vision and Applications, 2004, 15(4) : 179-185.
  • 9SHAH M. Automated visual inspection/detection of rail- road track[ R]. Florida: Computer Vision Lab, Universi- ty of Central Florida, 2010.
  • 10LI Q Y, REN S W. A real-time visual inspection system for discrete surface defects of rail heads[ J]. IEEE Trans- actions on Instrumentation and Measurement, 2012, 61 (8) :2189-2199.

引证文献1

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部