期刊文献+

基于稀疏超完备表示的目标检测算法 被引量:10

Object detection algorithm based on sparse overcomplete representation
下载PDF
导出
摘要 基于视觉超完备机制的图像稀疏表示是一种新的图像表征方法。针对目标检测问题,提出了一种基于视觉稀疏超完备表示的计算模型,实现了非结构化场景中的目标检测。该方法首先基于能量模型和评分匹配(score matching)方法建立稀疏超完备计算模型,进而设计了基于神经元响应以及动态阈值策略的目标检测算法,最后通过多类型交通图像验证算法有效性。结果表明,该方法与计算机视觉方法比较具有较高的准确率,能够利用少样本实现大交通流量中目标的检测。 Image sparse representation based on visual overcomplete mechanism is a new image representation meth- od. Aiming at the object detection problem in image, we propose a computing model based on visual sparse overcom- plete representation method, which achieves the object detection in unstructured scenes. In this method, firstly, a sparse overcomplete computing model is established based on energy model and score matching method. Then the ob- ject detection algorithm based on neuron response and dynamic threshold strategies is designed. Various kinds of traf- fic images were used to verify the effectiveness of the algorithm. The results show that compared with computer vision methods, the proposed method has higher accuracy and can realize the object detection in large traffic flow with fewer samples.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第6期1273-1278,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60841004 60971110 61172152) 郑州市科技攻关(112PPTGY219-8) 河南省青年骨干教师计划(2012GGJS-005)资助项目
关键词 稀疏超完备 非结构化 目标检测 评分匹配 sparse overcomplete unstructured object detection score matching
  • 相关文献

参考文献17

  • 1HEAI~Y,CHRISTOPHER G. Altention and visual memory in visualization and computer graphics [ J ]. IEEE Transac- tions on Visualization and Computer Graphics ,2012,18 ( 7 ) :1170-1188.
  • 2DAVIS A, LEVOY M, DURAND F. Unstructured light fields[ J ]. Computer Graphics Forum, 2012, 31 (2): 305-314.
  • 3逯鹏,李永强,王治忠,矫琨.基于视觉感知的故障图像检测算法[J].仪器仪表学报,2010,31(9):1997-2002. 被引量:9
  • 4BRUNO A, OLSHAUSEN. Highly overcomplete sparse coding[J]. Proc. SPIE 8651, Human Vision and Elec- tronic Imaging XVIII,86510S ( March 14,2013 ).
  • 5MALLAT, STEPHANE G. A theory for muhiresolution sig- nal decomposition : The wavelet representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1989,11 (7) :674-693.
  • 6OLSHAUSEN B A, FIELD D J. Sparse coding with an overcomplete basis set : A strategy employed by V1 [ J ]. Vision Research, 1997,37 ( 23 ) :3311-3325 ( 15 ).
  • 7DAVID L, DONOHO, MICHAEL E. Optimally sparse rep- resentation in general (nonorthogonal) dictionaries via 1 minimization [ J ]. The National Academy of Sciences, 2003,100 ( 5 ) : 2197-2202.
  • 8HYVARINEN A, HOYER P O, MIKA INKI. Topographic independent component analysis [ J]. MIT Press Journals, 2001,13(7) :1527-1558.
  • 9HAUF G F, KROSSE B, LUDERITZ B, et al. Effect of metoprolol CR/XL in chronic heart failure:Metoprolol CR XL randomised intervention trial in congestive heart fail- ure (MERIT-HF) [ J ]. The Lancet, 1999,353:9169.
  • 10YANG J CH, YU K, HUANG T. Efficient highly over- complete sparse coding using a mixture model [ J ]. Lec- ture Notes in Computer Science,6315,2010:113-126.

二级参考文献48

  • 1邵君,尹忠科,王建英,张跃飞.信号稀疏分解中过完备原子库的集合划分[J].铁道学报,2006,28(1):68-71. 被引量:17
  • 2曾理,安贝贝,马睿.脊波在工业CT图像裂纹边缘检测中的应用[J].仪器仪表学报,2007,28(6):981-986. 被引量:13
  • 3Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 4Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 5Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 6Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 7Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 9Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598

共引文献72

同被引文献103

引证文献10

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部