期刊文献+

一种面向数据密集型应用的并行程序执行模型 被引量:2

Parallel Program Execution Model for Data-intensive Applications
下载PDF
导出
摘要 随着各领域需要处理的数据量越来越大,数据密集型应用也变得越来越被重视.该文提出一种包含数据访存层次和访存冲突等信息的新并行程序执行模型PSRAM(h).针对数据密集型应用以访存为主的特点,PSRAM(h)模型将程序执行时间简化为访存时间,通过分析各程序子段的访存层次和数量来预测串行程序的执行时间,进而通过使用各线程执行时间的最大值来预测并行程序的执行时间.使用PSRAM(h)模型下对最典型的数据密集型应用矩阵向量乘进行分析,在龙芯3A处理器和Intel Xeon E5520处理器两个平台上的测试结果表明,PSRAM(h)模型分析结果与实测结果大部分情况下误差小于20%.由此可见,针对数据密集型应用,PSRAM(h)不但可以给出程序执行时间的下限,还可以有效的预测程序的执行时间. With the amount of data in all areas need to be processed,data-intensive applications become more and more important.This paper proposes a new parallel program execution model PSRAM(h) considering the data memory hierarchy and memory access conflicts.Memory access is a major component of the date-intensive applications.The program execution time is simplified into the memory access time in model PSRAM(h).The execution time of the serial program is predicted by analyzing the level and the number of the memory accesses in the program segments.And the execution time of the parallel program is predicted by using the maximum value of the thread execution time.Matrix-vector multiplication,w hich is the most typical data-intensive applications,is analyzed by the model.Test results on loongson-3A processor and Intel Xeon E5520 processor show that,in most case,the deviation betw een the PSRAM(h) model's results and w ith experimental results is less than 20%.Thus,PSRAM(h) model not only show s the low er limit of the program execution time,also can be used to predict program execution time effectively.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第7期1457-1461,共5页 Journal of Chinese Computer Systems
基金 国家"核高基"重大专项项目(2009ZX01028-002-003-005)资助 国家自然科学基金项目(60833004)资助
关键词 数据密集型 共享内存 PSRAM(h) 程序执行模型 date-intensive shared memory PSRAM(h) program execution model
  • 相关文献

参考文献4

二级参考文献39

  • 1吴少刚,章隆兵,蔡飞,顾丽红,唐志敏.机群Open MP系统的设计与实现[J].计算机学报,2004,27(7):904-912. 被引量:8
  • 2陈国良,孙广中,张云泉,莫则尧.Study on Parallel Computing[J].Journal of Computer Science & Technology,2006,21(5):665-673. 被引量:6
  • 3[6]Culler D, Karp R, Patterson D et al. LogP: Towards a realistic model of parallel computation. In: Proceedings of PPoPP IV, San Diego, CA, USA, 1993.1~12
  • 4[7]Gibbons Phillip B, Matias Yossi, Ramachandran V. Can a shared-memory model serve as a bridging model for parallel computation? In: Proceedings of SPAA′97, Newport, Rhode Island, USA, 1997. 72~83
  • 5[8]Cook S A, Reckhow R A. Time bounded random access machines. Journal of Computer and Systems Sciences, 1973, 7(4) :354~375
  • 6[9]Alpern B, Carter L, Feig E, Selker T. The uniform memory hierarchy model of computation. Algorithmica, 1994, 12(2/3):72~109
  • 7[10]Aggarwal A, Alpern B, Chandra A, Snir M. A model for hierarchical memory. In: Proceedings of the 19th Annual ACM Conference on Theory of Computing, New York, USA, 1987.305~314
  • 8[11]Aggarwal A, Alpern B et al. Hierarchical memory with block transfer. In: Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angels, California,USA, 1987. 204~216
  • 9[12]Amato N M et al. Predicting performance on SMPs: A case study--the SGI Power Challenge. In: Proceedings of the 14th International Parallel and Distributed Processing Symposium (IPDPS′00), Cancun, Mexico, 2000. 729~737
  • 10[14]Badawy A H, Aggarwal A, Yeung D, Tseng C W. Evaluating the impact of memory system performance on software prefetching and locality optimizations. In: Proceedings of 2001 International Conference on Supercomputing (ICS′01), Sorrento,Italy,2001. 486~500

共引文献145

同被引文献16

  • 1Garcia V M, López I R, Villar L F. iLAND:an enhanced middleware for real-time reconfiguration of service oriented distributed real-time systems[J] . IEEE Trans on Industrial Informatics, 2013, 9(1):228-236.
  • 2García V M, Basanta V P. A real-time perspective of service composition:key concepts and some contributions[J] . Journal of Systems Architecture, 2013, 59(10):1414-1423.
  • 3García V M, Basanta V P. Comparative analysis of two different middleware approaches for reconfiguration of distributed real-time systems[J] . Journal of Systems Architecture, 2014, 60(2):221-233.
  • 4Baruah S K, Burns A, Davis R I. Response-time analysis for mixed criticality systems[C] //Proc of the 32nd Symposium on Real-Time Systems. [S. l.] :IEEE Press, 2011:34-43.
  • 5Panahi M, Nie W, Lin K J. The design of middleware support for real-time SOA[C] // Proc of the 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing. [S. l.] :IEEE Press, 2011:117-124.
  • 6Cuzzocrea A. A framework for modeling and supporting data transformation services over data and knowledge grids with real-time bound constraints[J] . Concurrency and Computation:Practice and Experience, 2011, 23(5):436-457.
  • 7García V M, Alonso A, De la Puente J A. A dual-band priority assignment algorithm for dynamic QoS resource management[J] . Future Generation Computer Systems, 2012, 28(6):902-912.
  • 8Garcia-Valls M, Basanta-Val P, Estévez-Ayres I. Supporting service composition and real-time execution throught characterization of QoS properties[C] // Proc of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. New York:ACM Press, 2011:110-117.
  • 9Garcia-Valls M, Basanta-Val P, Marcos M, et al. A bi-dimensional QoS model for SOA and real-time middleware[J] . Computer Systems Science and Engineering, 2013, 28(5):311-322.
  • 10宋怀明,安明远,王洋,袁春阳,孙凝晖.大规模数据密集型系统中的去重查询优化[J].计算机研究与发展,2010,47(4):581-588. 被引量:6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部