期刊文献+

差分隐私DPE k-means数据聚合下的多维数据可视化 被引量:3

Multidimensional Data Visualization Using Aggregation Method of Differential Privacy Equipartition k-means
下载PDF
导出
摘要 近年来隐私保护下的数据挖掘发展迅速,但应用广泛的数据可视化中的隐私保护问题则成果鲜见,差分隐私保护是一种新兴的具有广阔发展前景的隐私保护方法,目前,差分隐私保护下的多维数据可视化方法却未见报道.文章研究如何在数据可视化的过程中满足差分隐私保护.现有的DP k-means算法不支持较大的k,因此在数据聚合的过程中仅有理论意义.提出一个ε-Differential Privacy Equipartition k-means算法(DPE k-means),能够支持较大的k,较好地解决了可视化中数据的叠加问题,在一定的隐私保护级别下极大地改善了数据可视化后的图像质量.仿真实验中计算了衡量数据聚合质量的几项指标,结果表明DPE k-means算法优于现有的DP k-means算法. Privacy preserving data mining developed rapidly in recent years,on the other hand,there is a dearth of research on privacy preserving data visualization,w hich have w ide range of applications.Differential privacy is a new promising privacy-preserving paradigm,in fact,w e are not aw are of any existing multidimensional data visualization method under differential privacy.In this paper,w e study how to preserve priavcy in the process of data visualization.existing DP k-means algorithm is mainly of theoretical interest because it doesn't w ork at large k w hich is necessary in data aggregation.Motivated by this,w e propose ε-Differential Privacy Equipartition k-means(DPE k-means),a method w hich w ork better at large k.w e find it eliminate a majority of data overlapping,greatly improve the visualization image quality under a certain privacy level.Our experiments show that at the same ε,DPE k-means gets a much higher aggregation quality level than existing DP k-means method.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第7期1637-1640,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070033)资助 广东省自然科学基金项目(9251009001000005)资助 广东省科技计划项目(2010B050400011)资助
关键词 差分隐私保护 K-均值 数据聚合 数据可视化 平行坐标 differential privacy preservation k-means data aggregation data visualization parallel coordinates
  • 相关文献

参考文献18

  • 1Blum A, Dwork C, McSherry F, et al. Practical privacy: the SuLQ framework[ C ]. Proceedings of the 24th ACM SIGMOD In- ternational Conference on Management of Data/Principles of Data- base Systems ( PODS 2005 ), 2005 : 128-138.
  • 2Maryse Eymonerie, Peter Ketelaar. Xmdvtool[ EB/OL]. hap:// davis, wpi. edu/xmdv/datasets, html, July 2009.
  • 3Dasgupta Aritra,Kosara Robert. Privacy-preserving data visualiza- tion using parallel coordinates [ C ]. Proceedings of Visualization and Data Analysis, 2011.
  • 4Zhou H, Yuan X, Qu H, et al. Visual clustering in parallel coordi- nates [ J]. Computer Graphics Forum, 2008,27 (3) : 1047-1054.
  • 5Dwork C. Differential privacy in new settings[ C]. Proceedings of Symposium on Discrete Algorithms (SODA), Society for Industri- al and Applied Mathematics, 2010 : 174-183.
  • 6Li Ning-hui, Li Tian-cheng, V S. T-closeness Privacy beyond K-anonymity and diversity[ C]. Proceedings of the 23rd International Conference on Data Engineering ( ICDF_,2007 ), 2007 .. 106-115.
  • 7李杨,郝志峰,温雯,谢光强.差分隐私保护k-means聚类方法研究[J].计算机科学,2013,40(3):287-290. 被引量:48
  • 8Dwork C. Differential privacy[C]. Proceedings of the 33rd Inter- national Colloquium on Automata, Languages and Programming, part II (ICALP 2006), 2006:1-12.
  • 9李杨,温雯,谢光强.差分隐私保护研究综述[J].计算机应用研究,2012,29(9):3201-3205. 被引量:40
  • 10Agrawal R, Srikant R. Privacy-preserving data mining [ J ]. ACM Sigmod Record, 2000,29(2) :439 - 450.

二级参考文献63

  • 1SWEENEY L. ^-anonymity: a model for protecting privacy[ J ]. Inter-national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,2002,10(5) :557-570.
  • 2SWEENEY L. Achieving A>anonymity privacy protection using gener-alization and suppression[ J]. International Journal on Uncertainty,Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588.
  • 3Li Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. (-closeness :privacy beyond A:-anonymity and /-diversity [ C ] //Proc of the 23rd International Conference on Data Engineering. Washington DC: IEEE Computer Society ,2007 :106-115.
  • 4MACHANAVAJJHALA A,KIFER D, GEHRKE J, et al. /-diversity; privacy beyond A:-anonymity [ C ] //Proc of the 22nd International Conference on Data Engineering. Washington DC:IEEE Computer Society,2006 :24-35.
  • 5CORMODE G,PROCOPIUC M,SRIVASTAVA D. et aL Differentially private publication of sparse data [ J ]. ArxiV Preprint arXiv : 1103. 0825,2011.
  • 6SARATHY R,MURALIDHAR K. Some additional insights on applying differential privacy for numeric data [ C ]//Proc of International Conference on Privacy in Statistical Databases. Berlin : Springer-Ver-lag,2010:210-219.
  • 7DWORK C, NAOR M,PITASSI T,et al. Pan-private streaming algorithms [C ] //Proc of the 1st Symposium on Innovations in Computer Science. Beijing:Tsinghua University Press, 2010.
  • 8DWORK C, NAOR M,PITASSI T, et al. Differential privacy under continual observation [ C ]//Proc of the 42nd ACM Symposium on Theory of Computing. New York: ACM Press,2010:715-724.
  • 9LI Ning-hui, QARDAJI W,SU Dong. Provably private data anony-mization: or, A:-anonymity meets differential privacy, CERIAS TR 2010-24[ R] . West Lafayette; Center for Education and Research Information Assurance and Security,Purdue University ,2010.
  • 10ZHOU Shu-heng, LIGETT K, WASSERMAN L. Differential privacy with compression [ C ] //Proc of IEEE International Symposium on Information Theory. Washington DC: IEEE Computer Society, 2009: 2718-2722.

共引文献80

同被引文献25

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2FLAVIO C, N1LESH D, RAVI K. Correlation clustering in MapRe- duce[C]//The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2014). New York, USA, c2014: 641-650.
  • 3ROY I, SETTY S T V, KILZER A, et al. Airavat: security and privacy for MapReduce[C]//The 7th USENIX Symposium on Networked Sys- tems Design and Implementation. San Jose, USA, c2010:297-312.
  • 4SHI E, CHANT H, RIEFFEL E G, et al. Privacy-preserving aggrega- tion of time-series data[C]//The Network and Distributed System Se-curity Symposium. San Diego, USA, c2011.
  • 5DWORK C. A Firm Foundation for Private Data Analysis[J]. Commu- nications of the ACM, 2011, 54(I):86-95.
  • 6MCGREGOR A, MIRONOV I, PITASSI T, et al. The limits of two-party differential privacy[C]//The 51st IEEE Annual Sympo- sium on Foundations of Computer Science. Las Vegas, USA, c2010:81-90.
  • 7MCSHERRY F. Privacy integrated queries: an extensible platform for privacy-preserving data analysis[J]. Communication of the ACM, 2010, 53(9):89-97.
  • 8李杨,郝志峰,温雯,谢光强.差分隐私保护k-means聚类方法研究[J].计算机科学,2013,40(3):287-290. 被引量:48
  • 9熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-122. 被引量:175
  • 10张啸剑,孟小峰.面向数据发布和分析的差分隐私保护[J].计算机学报,2014,37(4):927-949. 被引量:138

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部