期刊文献+

基于SVD++与行为分析的社交推荐 被引量:4

Social recommendation based on SVD + + and behavior analysis
下载PDF
导出
摘要 社交网络和推荐系统作为当前学术界和工业界的研究热点,二者的结合是大势所趋。然而当前的研究主要集中于用户兴趣建模,对行为的分析建模相对较少,因此提出多种方法对用户行为进行分析与建模,并与SVD++模型进行融合,实验结果证实了方法的有效性。 As the hot research topic in both academia and industry, the combination of social networks and recommender system is a major trend. However, current research is mainly focused on modeling user interests while behavior analysis and modeling is relatively scarce. Thus several methods for user behavior analysis and modeling were proposed in this paper and then combined with the SVD + + model. Experiments demonstrate the effectiveness of the methodology described.
作者 刘剑波 杨健
出处 《计算机应用》 CSCD 北大核心 2013年第A01期82-86,共5页 journal of Computer Applications
关键词 推荐系统 社交网络 矩阵分解 排序学习 行为分析 recommender system social network matrix factorization learning to rank behavior analysis
  • 相关文献

参考文献15

  • 1ADOMAVICIUS G, TUZHILIN A. Towards the next generation ofrecommender systems: a survey of the state-of-the-art and possibleextensionsf J]. IEEE Transactions on Knowledge and Data Engineer-ing, 2005,17(6): 634 -749.
  • 2NIU Y, WANG Y, SUN G, et al. The tencent dataset and KDDCup’12[C] // KDD-Cup Workshop 2012. Beijing:[s.n.],2012.
  • 3KOREN Y. Factorization meets the neighborhood: a multifacetedcollaborative filtering model [ C]// Proceedings of the 14th ACMSIGKDD International Conference on Knowledge Discovery and DataMining. New York: ACM, 2008: 426 -434.
  • 4KOREN Y,BELL R, VOLINSKY C. Matrix factorization tech-niques for recommender systems [ J]. IEEE Computer, 2009,42(8): 30 -37.
  • 5LIU T Y. Learning to rank for information retrieval[ J]. Foundationsand Trends in Information Retrieval, 2009, 3(3): 225 -331.
  • 6WEIMER M, KARATZOGLOU A, LE Q,et al. CofiRank - maxi-mum margin matrix factorization for collaborative ranking [ C ] //NIPS,07: Advances in Neural Information Processing Systems. Cam-bridge: MIT Press, 2008: 1593 -1600.
  • 7TENENBAUM J, FREEMAN W. Separating style and content with bi-linear modeIs[J]. Neural Computation, 2000, 12(6): 1247 -1283.
  • 8MA H,ZHOU D Y,LIU C, et al. Recommender systems with so-cial regularization [ C]// Proceedings of the 4th ACM InternationalConference on Web Search and Data Mining. New York: ACM,2011: 287 -296.
  • 9BELL R, KOREN Y. Improved neighborhood-based collaborativefiltering[ C/OL]// KDDCup’ 07: Proceedings of KDD Cup andWorkshop. [ 2012- 12-01]. http: //www. cs. uic. edu. / liub/KDD-cup-2007/proceedings/Neighbor - Koren. pdf.
  • 10PAZZANI M J, BILLSUS D. Content-based recommendation sys-tems[ C] // The Adaptive Web: Methods and Strategies of WebPersonalization, LNCS 4321. Berlin: Springer, 2007: 325 - 341.

二级参考文献5

共引文献23

同被引文献20

  • 1Lemire D, Maclachlan A. Slope one predictors for online rating- based collaborative filtering [C]// Proceedings of SIAM Data Mining. Newport Beach, California: SDM, 2005, 5: 1-5.
  • 2YEHUDA Koren. Factor in the neighbors: scalable and accu-rate collaborative filtering [J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(1) : 1-10.
  • 3RUBENS Neil, KAPLAN Dain, SUGIYAMA Masashi. Active learning in recommender systems [M]// Anon. Recommender Systems Handbook. US: Springer, 2011: 736-767.
  • 4KARIMI Rasoul, FREUDENTHALER Christoph, NANOPOU- LOS Alexandros, et al. Active learning for aspect model in recommender systems [C]// Proceedings of 2011 IEEE Sympo- sium on Computational Intelligence and Data Mining (CIDM). IS.1.]: IEEE, 2011 : 162-167.
  • 5JIN R, SI L. A bayesian approach toward active learning for collaborative filtering [C]// Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. IS.1.]: AUAI Press, 2004: 278-285.
  • 6KARIMI Rasoul, FREUDENTHALER Christoph, NANOPOU- LOS Alexandros, et al. Non-myopic active learning for recom- mender systems based on matrix factorization [C]// Proceedings of 2011 IEEE International Conference on Information Reuse and Integration. [S.1.]: IEEE, 2011: 299-303.
  • 7推荐系统相关算法(1):SVD[EB/OL].http://www.cnblogs.corn/FengYan/archive/2012/05/06/2480664.html.
  • 8机器学习经典算法12一SVD及其在推荐中的应用[EB/OL].http://bloz.csdn.net/moodvtonz/article/details/10085215.
  • 9刘建国,周涛,郭强,汪秉宏.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-10. 被引量:131
  • 10王国霞,刘贺平.个性化推荐系统综述[J].计算机工程与应用,2012,48(7):66-76. 被引量:337

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部