期刊文献+

基于帧间相关性的乳腺MRI肿块分割及重建 被引量:3

Segmentation and 3D reconstruction of breast MRI images based on inter-frame correlations
下载PDF
导出
摘要 核磁共振成像(MRI)对乳腺MRI中感兴趣区域(肿块区域)的提取和三维可视化显示可以帮助医生对病变进行更准确的诊断。RSF模型适用于边界模糊的目标分割,利用该模型提出一种基于帧间相关性的乳腺MRI肿块分割方法,并利用分割结果对肿块进行面绘制三维显示。首先对MRI序列图确定迭代顺序,选定关键帧并手动给出初始轮廓,利用RSF模型对其进行分割;将分割结果作为迭代的初始轮廓,采用轮廓迭代的方法将上一帧的分割结果作为下一帧分割的初始轮廓,利用RSF模型对整个序列图进行分割。由于乳腺MRI序列图中相邻几帧间图像灰度分布类似,肿块位置和形状相近等帧间相关性,因此轮廓迭代的方式可以克服RSF模型对初始轮廓敏感的缺点。最后将多组参数下获得的分割结果进行最优化筛选,以提高整个序列的分割精度。将该方法应用于20例乳腺MRI序列图,并与手动分割轮廓进行对比,结果证明,该算法对乳腺MRI中肿块分割具有较高的分割精度和自适应性。 MRI ( Magnetic Resonance Imaging) has become one of the primary means of breast cancer' s diagnosis. The extraction of the region of interest ( tumor area) and the 3D visual display can help the doctors make more accurate treatment. Taking advantages of RSF ( Region-Scalable Fitting) model which was applied to the segmentation of the object with fuzzy boundaries, a segmentation method for breast MRI tumor was proposed based on inter-frame correlations and the results were used to get the 3D reconstruction. First the iterative sequence of the MRI diagrams was determined, and the key frame was selected, The key frame was segmented by using RSF model with manually given initial outline and the result was taken as the initial outline of the iteration. The method of initial contour iteration was adopted to get the automatic segmentation of breast MRI sequential diagram and the optimized method was used to screen the results under a set of parameters, improving the accuracy of the segmentation for entire sequence. Because the gray distribution of the adjacent inter-frame image is similar, using iteration can overcome the shortcoming that RSF model is sensitive to the initial outline. The proposed method was applied to 20 cases of breast MRI sequential diagrams. The result was compared with the contour of manual segmentation and demonstrated that the method proposed in this paper achieves a better performance in accuracy and robustness.
出处 《计算机应用》 CSCD 北大核心 2013年第A01期204-207,217,共5页 journal of Computer Applications
基金 国家杰出青年基金资助项目(60788101) 国家自然科学基金资助项目(60705016 61001215) 浙江省自然科学基金资助项目(LY12F03003)
关键词 乳腺 核磁共振成像 肿块分割 水平集 最优化 三维面绘制 breast Magnetic Resonance Imaging(MRI) tumor segmentation level set optimization 3D surface rendering
  • 相关文献

参考文献16

  • 1陈武凡,秦安,江少峰,冯前进,郝立巍.医学图像分析的现状与展望[J].中国生物医学工程学报,2008,27(2):175-181. 被引量:28
  • 2HECKEMANN R. A, HAJNAL J V, ALJABAH P, et al Automaticanatomical brain MRI segmentation combining label propagation anddecision fusion[ J]. Neuroimage, 2006, 33( 11): 115 -126.
  • 3王琪,丁辉,张伟,王广志.利用分区处理和水平集算法分割序列三维乳腺MRI[J].清华大学学报(自然科学版),2009(3):419-423. 被引量:5
  • 4潘振宽,李华,魏伟波,郭振波,张春芬.三维图像多相分割的变分水平集方法[J].计算机学报,2009,32(12):2464-2474. 被引量:27
  • 5WANG L,U C, SUN Q, et al. Active contours driven by local andgloabl intensity fitting energy with application to brain MR imagesegmentation[ J]. Computerized Medical Imaging and Graphics,2009,33(17): 520 -531.
  • 6ZHANG K, SONG H,ZHANG L. Active contours driven by local im-age fitting enery[ J]. Pattern Recognition, 2010, 43(4): 1199 -1206.
  • 7LIC,HUANG R,DING Z, et al. A level set method for image seg-mentation in the presence of intensity inhomogeneities with applica-tion to MRJ [ J]. IEEE Transactions on Image Processing, 2011,20(7): 2007 -2016.
  • 8LI C,XU C,GUI C,et aL Distance regularized level set evolutionand its application to image segmentation [ J] . IEEE Transactions onImage Processing, 2010,19(12): 3243 -3254.
  • 9任继军,何明一.一种基于三维直方图的改进C-V模型水平集图像分割方法[J].红外与毫米波学报,2008,27(1):72-76. 被引量:17
  • 10CHAN T F, VESE L. A. Active contours without edges [ J], IEEETransactions on Image Processing, 2001, 10(2): 266 -277.

二级参考文献79

共引文献129

同被引文献25

  • 1马莉,张勇,朱磊.一种偏置场环境下的模糊聚类分割算法[J].计算机工程与应用,2005,41(22):27-28. 被引量:1
  • 2Bezdek J C. A Convergence Theorem for The Fuzzy ISODATAClustering Algorithm[ J]. IEEE PAMI, 1980,1 (2) : 1-8.
  • 3Keh-Shih Chuang, Hong-Long Tzeng,Sharon Chen, el al. Fuzzy c-Means Clustering wilh Spatial Information for Image Segmentation[J]. Computerized Medical Imaging and Graphics, 30 ( 2006) : 9 -15.
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models[J]. Internationa] Journal of Computer Vision, 1988,1(4): 321 —331.
  • 5Xu C,Prince J L. Gradient Vector Flow:A New External Force forSnakes [ C ] //Computer Vision and Pattern Recognition, 1997. Pro-ceedings ,1997 IEEE Computer Society Conference on. IEEE,1997:66-71.
  • 6Dunn J C. A Fuzzy Relative of The ISODATA Process and Its Usein Detecting Compact Well Separated Clusters[ J]. Journal of Cy-bernetics ,1973,3(3):32-57.
  • 7Bezdek J C. Pattern Recognition with Fuzzy Objective Function Al-gorithms [ M]. New York : Plenum Press, 1981.
  • 8Pham D L,Prince. Adaptive Fuzzy Segmentation of Magnetic Reso-nance Images [ J ] . IEEE Transactions on Medical Imaging, 1999,18(9) :737-752.
  • 9Renjie He,Sushmita Datta,Balasrinivasa Rao Sajja. Adaptive withContextual Constrains for Segmentation of Multi-Spectral MRI[ J].Conf Proc IEEE Eng Med Biol Soc,2004(3) : 1660- 1663.
  • 10李志梅,肖德贵.快速模糊C均值聚类的图像分割方法[J].计算机工程与应用,2009,45(12):187-189. 被引量:25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部