期刊文献+

小波变换分析降水时间序列的多分辨率特性研究 被引量:2

Research of multiresolution wavelet transform to rainfall time series
下载PDF
导出
摘要 利用小波变换的多分辨率特性分析降水时间序列,其小波分解级数应是确定的。为解决此问题,提出一种新的框架:首先利用àtrous小波变换对降水时间序列进行分解,然后对分解的序列进行多尺度熵(MSE)分析以获取原始降水时间序列的一些潜在特征。分析表明,小波分解级数可以由不同尺度下近似信号MSE曲线的Mann-Kendall(MK)检验确定。对环渤海湾地区包括大连、锦州、天津、潍坊四个站点的降水时间序列复杂度进行多尺度分析比较,结果表明,利用MSE分析和MK检验可以得到较理想的小波分解级数。不同地方的降水时间序列复杂度分析可以为水资源的规划和应用提供参考。 The number of resolution levels of a wavelet transform to be used in the application to a rainfall time series should be determined. To resolve this problem, this paper presented a novel framework. First, the rainfall time series were decomposed using the a trous wavelet transform. Then, Multi-Scale Entropy (MSE) analysis that helps to elucidate some hidden characteristics of the original rainfall time series was applied to the decomposed rainfall time series. The analysis shows that the Mann-Kendall (MK) rank correlation test of MSE curves of residuals at various resolution levels could determine the number of resolution levels in the wavelet decomposition. The complexity of rainfall time series at four stations around Bohai Bay on a multi-scale was compared. The results reveal that the suggested number of resolution levels can be obtained using MSE analysis and MK test. The complexity of rainfall time series at various locations can also be analyzed to provide a reference for water resource planning and application.
出处 《计算机应用》 CSCD 北大核心 2013年第A01期331-334,共4页 journal of Computer Applications
关键词 小波变换 多尺度熵 MK检验 降水时间序列 wavelet transform Multi-Scale Entropy (MSE) Mann-Kendall (MK) test rainfall time series
  • 相关文献

参考文献12

  • 1周园园,师长兴,范小黎,等.国内水文序列变异点分析方法及在各流域&用研究进展[J].地理科学,2011,30(11): 1361 -1369.
  • 2LABAT D. Recent advances in wavelet analyses: part 1,a review ofconcepts[ J]. Journal of Hydrology, 2005,314( 1 -4): 275 - 288.
  • 3PARTAL T,KISI 0. Wavelet and neuro-fuzzy conjunction model forprecipitation forecasting[ J]. Journal of Hydrolf^y, 2007, 342( 1/2): 199-212.
  • 4SANG Y F, WANG D,WU J C, et al. The relation between periods5identification and noises in hydrologic series data[ J]. Journal of Hy-drology, 2009,368( M) :165 -177.
  • 5MISHRA A K, 0ZGER M, SINGH V P. An entropy-based investiga-tion into the variability of precipitation[ J]. Journal of Hydrology,2009,370(14):139-154.
  • 6BHUNSELL N A. A multiscale information theory approach to assessspatial-temporal variability of daily precipitation[ J]. Journal of Hy-drology, 2010,385(14):165-172.
  • 7RICHMAN J S, MOORMAN J R. Physiological time-series analysis u-sing approximate entropy and sample entropy[ JJ. American Journal ofPhysiology Heart Circulatory Physiology, 2000,278(6) :2039 -20A9.
  • 8COSTA M, GOLDBERGER A L,PENG C K. Multi scale entropy a-nalysis of complex physiologic time series[ J]. Physical Review Let-ters, 2002, 89(6):068102.
  • 9蔡瑞,卞春华,宁新宝.多尺度熵在心率变异信号复杂性分析中的应用[J].北京生物医学工程,2007,26(5):543-544. 被引量:9
  • 10薛丽芳,谭海樵.沂河流域水文特征变化及其驱动因素[J].地理科学进展,2011,30(11):1354-1360. 被引量:25

二级参考文献37

共引文献41

同被引文献33

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部