期刊文献+

基于灰色关联分析优化加权支持向量机的入侵检测系统的设计

Design of IDS Based on Based on Gray Relational Analysis and Optimization
下载PDF
导出
摘要 针对传统SVM理论中现存的问题:没有考虑特征选取维数过高和特征重要性对分类结果影响的缺陷,提出了一种新的基于灰色关联分析优化的特征加权支持向量机算法。该方法首先利用灰色关联分析算法,筛选出主成分,再用对称不确定法计算各个特征对分类任务的权值。在充分的实验基础上将新方法应用于入侵检测中,得到了良好的实验结果。理论分析与数值实验都表明,尤其在小样本条件下,该入侵检测具有良好的检测率和更高的效率。 According to the existing problems in the theory of traditional SVM: the high dimensions of feature selection and the importance of characteristics in affecting the classification results are not considered. A new feature-weighted support vector machine algorithm is proposed, based on gray relational analysis and optimization. First, using the gray relational analysis algorithms to filter out the main ingredients, then using symmetrical uncertainty method to calculate the weights of the various characteristics of the classification task. In the full experiment on the basis of a new method used in intrusion detection, good experimental results is obtained. Theoretical analysis and numerical experiments indicate that our algorithm have good detection rate and higher efficiency in the intrusion detection, especially in the small sample experiment.
出处 《科技信息》 2013年第17期388-390,共3页 Science & Technology Information
关键词 支持向量机 入侵检测 灰色关联分析 对称不确定法 Support vector machines Intrusion detection Gray relational analysis Symmetrical uncertainty
  • 相关文献

参考文献6

  • 1T D Lane,Machine Lxaming Techniques for the Computer Security of AnomalyDetection[D].Purdue University,2000.
  • 2D.Denning,An intrusion detection model,IEEE Trans.On Software EngineeringVol[C].13,No.2,PP.222-232,1987.
  • 3Mukkamala S,sung A H.Detecting denial of service attacks using support vectormachines[C].proc IEEE International Conference on Fuzzy systems,2003:1236.
  • 4Sung A Mukkamala S.Identifying important features for intrusion detectionusing support vector machines and neural networks[J].Symposium on applicationsand the Internet(SAINT’03)2003:209-216.
  • 5于晓聪,董晓梅,于戈.基于主机行为异常的P2P僵尸网络在线检测方法[J].小型微型计算机系统,2012,33(1):11-17. 被引量:4
  • 6汪廷华,田盛丰,黄厚宽.特征加权支持向量机[J].电子与信息学报,2009,31(3):514-518. 被引量:56

二级参考文献16

  • 1赵晖,荣莉莉.支持向量机组合分类及其在文本分类中的应用[J].小型微型计算机系统,2005,26(10):1816-1820. 被引量:7
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 4Vapnik V. The Nature of Statistical Learning Theory. New York: SpringerVerlag, 1995: 91-188.
  • 5Cristianini N and Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, 2000: 47-98.
  • 6Lin C F and Wang S D. Fuzzy support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2): 464-471.
  • 7Zhan Yan, Chen Hao, and Hang Guochun. An optimization algorithm of K-NN classifier. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, China, 2006: 2246-2251.
  • 8Wang Xizhao, Wang Yadong, and Wang Lijuan. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 2004, 25(10): 1123-1132.
  • 9Quinlan J R. Induction of decision tree. Machine Learning, 1986, 1(1): 81-106.
  • 10Han Jiawei and Kamber M. Data Mining: Concepts and Techniques: Second Edition. Beijing: China Machine Press, 2006: 296-300.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部